Copied to
clipboard

G = C2.S5order 240 = 24·3·5

2nd central stem extension by C2 of S5

non-abelian, not soluble

Aliases: C2.3S5, SL2(𝔽5)⋊C2, SmallGroup(240,90)

Series: ChiefDerived Lower central Upper central

C1C2SL2(𝔽5) — C2.S5
SL2(𝔽5) — C2.S5
SL2(𝔽5) — C2.S5
C1C2

20C2
10C3
6C5
10C22
15C4
10C6
20C6
20S3
6C10
5Q8
15D4
15C8
10D6
10Dic3
10C2×C6
6Dic5
15SD16
5SL2(𝔽3)
10C3⋊D4
6C5⋊C8
5GL2(𝔽3)

Character table of C2.S5

 class 12A2B3456A6B6C8A8B10
 size 1120203024202020303024
ρ1111111111111    trivial
ρ211-1111-1-11-1-11    linear of order 2
ρ344-210-111100-1    orthogonal lifted from S5
ρ444210-1-1-1100-1    orthogonal lifted from S5
ρ54-40-20-1002001    symplectic faithful, Schur index 2
ρ64-4010-1-3--3-1001    complex faithful
ρ74-4010-1--3-3-1001    complex faithful
ρ8551-11011-1-1-10    orthogonal lifted from S5
ρ955-1-110-1-1-1110    orthogonal lifted from S5
ρ106600-21000001    orthogonal lifted from S5
ρ116-60001000--2-2-1    complex faithful
ρ126-60001000-2--2-1    complex faithful

Smallest permutation representation of C2.S5
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(1 3 5 7)(2 32 6 28)(4 20 8 24)(9 21 13 17)(10 15 14 11)(12 19 16 23)(18 26 22 30)(25 35 29 39)(27 38 31 34)(33 36 37 40)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,3,5,7)(2,32,6,28)(4,20,8,24)(9,21,13,17)(10,15,14,11)(12,19,16,23)(18,26,22,30)(25,35,29,39)(27,38,31,34)(33,36,37,40)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,3,5,7)(2,32,6,28)(4,20,8,24)(9,21,13,17)(10,15,14,11)(12,19,16,23)(18,26,22,30)(25,35,29,39)(27,38,31,34)(33,36,37,40) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(1,3,5,7),(2,32,6,28),(4,20,8,24),(9,21,13,17),(10,15,14,11),(12,19,16,23),(18,26,22,30),(25,35,29,39),(27,38,31,34),(33,36,37,40)]])

C2.S5 is a maximal subgroup of   C4.6S5  C4.3S5  C22.S5
C2.S5 is a maximal quotient of   C22.2S5

Matrix representation of C2.S5 in GL4(𝔽3) generated by

1021
0120
1101
2101
,
2210
2002
0212
1220
G:=sub<GL(4,GF(3))| [1,0,1,2,0,1,1,1,2,2,0,0,1,0,1,1],[2,2,0,1,2,0,2,2,1,0,1,2,0,2,2,0] >;

C2.S5 in GAP, Magma, Sage, TeX

C_2.S_5
% in TeX

G:=Group("C2.S5");
// GroupNames label

G:=SmallGroup(240,90);
// by ID

G=gap.SmallGroup(240,90);
# by ID

Export

Subgroup lattice of C2.S5 in TeX
Character table of C2.S5 in TeX

׿
×
𝔽