Copied to
clipboard

G = CSU2(𝔽5)  order 240 = 24·3·5

Conformal special unitary group on 𝔽52

non-abelian, not soluble

Aliases: CSU2(𝔽5), C2.2S5, SL2(𝔽5).C2, SmallGroup(240,89)

Series: ChiefDerived Lower central Upper central

C1C2SL2(𝔽5) — CSU2(𝔽5)
SL2(𝔽5) — CSU2(𝔽5)
SL2(𝔽5) — CSU2(𝔽5)
C1C2

10C3
6C5
10C4
15C4
10C6
6C10
5Q8
15Q8
15C8
10Dic3
10Dic3
10C12
6Dic5
15Q16
5SL2(𝔽3)
10Dic6
6C5⋊C8
5CSU2(𝔽3)

Character table of CSU2(𝔽5)

 class 1234A4B568A8B1012A12B
 size 1120203024203030242020
ρ1111111111111    trivial
ρ2111-1111-1-11-1-1    linear of order 2
ρ3441-20-1100-111    orthogonal lifted from S5
ρ444120-1100-1-1-1    orthogonal lifted from S5
ρ54-4-200-1200100    symplectic faithful, Schur index 2
ρ64-4100-1-10013-3    symplectic faithful, Schur index 2
ρ74-4100-1-1001-33    symplectic faithful, Schur index 2
ρ855-1-110-1110-1-1    orthogonal lifted from S5
ρ955-1110-1-1-1011    orthogonal lifted from S5
ρ106600-21000100    orthogonal lifted from S5
ρ116-600010-22-100    symplectic faithful, Schur index 2
ρ126-6000102-2-100    symplectic faithful, Schur index 2

Smallest permutation representation of CSU2(𝔽5)
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 22 5 18)(2 31 6 27)(3 8 7 4)(9 21 13 17)(10 32 14 28)(11 16 15 12)(19 35 23 39)(20 48 24 44)(25 41 29 45)(26 36 30 40)(33 38 37 34)(42 47 46 43)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22,5,18)(2,31,6,27)(3,8,7,4)(9,21,13,17)(10,32,14,28)(11,16,15,12)(19,35,23,39)(20,48,24,44)(25,41,29,45)(26,36,30,40)(33,38,37,34)(42,47,46,43)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22,5,18)(2,31,6,27)(3,8,7,4)(9,21,13,17)(10,32,14,28)(11,16,15,12)(19,35,23,39)(20,48,24,44)(25,41,29,45)(26,36,30,40)(33,38,37,34)(42,47,46,43) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,22,5,18),(2,31,6,27),(3,8,7,4),(9,21,13,17),(10,32,14,28),(11,16,15,12),(19,35,23,39),(20,48,24,44),(25,41,29,45),(26,36,30,40),(33,38,37,34),(42,47,46,43)]])

CSU2(𝔽5) is a maximal subgroup of   C4.6S5  C4.S5  C22.S5
CSU2(𝔽5) is a maximal quotient of   C22.2S5

Matrix representation of CSU2(𝔽5) in GL4(𝔽3) generated by

1201
0012
2022
2210
,
2021
1202
0201
1222
G:=sub<GL(4,GF(3))| [1,0,2,2,2,0,0,2,0,1,2,1,1,2,2,0],[2,1,0,1,0,2,2,2,2,0,0,2,1,2,1,2] >;

CSU2(𝔽5) in GAP, Magma, Sage, TeX

{\rm CSU}_2({\mathbb F}_5)
% in TeX

G:=Group("CSU(2,5)");
// GroupNames label

G:=SmallGroup(240,89);
// by ID

G=gap.SmallGroup(240,89);
# by ID

Export

Subgroup lattice of CSU2(𝔽5) in TeX
Character table of CSU2(𝔽5) in TeX

׿
×
𝔽