direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×C29⋊C4, C58⋊C4, D29⋊C4, D58.C2, D29.C22, C29⋊(C2×C4), SmallGroup(232,12)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C29 — D29 — C29⋊C4 — C2×C29⋊C4 |
C29 — C2×C29⋊C4 |
Generators and relations for C2×C29⋊C4
G = < a,b,c | a2=b29=c4=1, ab=ba, ac=ca, cbc-1=b17 >
Character table of C2×C29⋊C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 29A | 29B | 29C | 29D | 29E | 29F | 29G | 58A | 58B | 58C | 58D | 58E | 58F | 58G | |
size | 1 | 1 | 29 | 29 | 29 | 29 | 29 | 29 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | i | i | -i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | i | -i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -i | i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | -i | -i | i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2927+ζ2924+ζ295+ζ292 | ζ2926+ζ2922+ζ297+ζ293 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2921+ζ2920+ζ299+ζ298 | ζ2918+ζ2916+ζ2913+ζ2911 | -ζ2921-ζ2920-ζ299-ζ298 | -ζ2918-ζ2916-ζ2913-ζ2911 | -ζ2928-ζ2917-ζ2912-ζ29 | -ζ2927-ζ2924-ζ295-ζ292 | -ζ2926-ζ2922-ζ297-ζ293 | -ζ2925-ζ2919-ζ2910-ζ294 | -ζ2923-ζ2915-ζ2914-ζ296 | orthogonal faithful |
ρ10 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2921+ζ2920+ζ299+ζ298 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2927+ζ2924+ζ295+ζ292 | ζ2926+ζ2922+ζ297+ζ293 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2926+ζ2922+ζ297+ζ293 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2921+ζ2920+ζ299+ζ298 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2927+ζ2924+ζ295+ζ292 | orthogonal lifted from C29⋊C4 |
ρ11 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2927+ζ2924+ζ295+ζ292 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2921+ζ2920+ζ299+ζ298 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2926+ζ2922+ζ297+ζ293 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2926+ζ2922+ζ297+ζ293 | ζ2927+ζ2924+ζ295+ζ292 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2921+ζ2920+ζ299+ζ298 | ζ2928+ζ2917+ζ2912+ζ29 | orthogonal lifted from C29⋊C4 |
ρ12 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2927+ζ2924+ζ295+ζ292 | ζ2926+ζ2922+ζ297+ζ293 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2921+ζ2920+ζ299+ζ298 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2921+ζ2920+ζ299+ζ298 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2927+ζ2924+ζ295+ζ292 | ζ2926+ζ2922+ζ297+ζ293 | orthogonal lifted from C29⋊C4 |
ρ13 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2926+ζ2922+ζ297+ζ293 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2921+ζ2920+ζ299+ζ298 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2927+ζ2924+ζ295+ζ292 | ζ2925+ζ2919+ζ2910+ζ294 | -ζ2927-ζ2924-ζ295-ζ292 | -ζ2925-ζ2919-ζ2910-ζ294 | -ζ2926-ζ2922-ζ297-ζ293 | -ζ2923-ζ2915-ζ2914-ζ296 | -ζ2921-ζ2920-ζ299-ζ298 | -ζ2928-ζ2917-ζ2912-ζ29 | -ζ2918-ζ2916-ζ2913-ζ2911 | orthogonal faithful |
ρ14 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2926+ζ2922+ζ297+ζ293 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2921+ζ2920+ζ299+ζ298 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2927+ζ2924+ζ295+ζ292 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2927+ζ2924+ζ295+ζ292 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2926+ζ2922+ζ297+ζ293 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2921+ζ2920+ζ299+ζ298 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2918+ζ2916+ζ2913+ζ2911 | orthogonal lifted from C29⋊C4 |
ρ15 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2921+ζ2920+ζ299+ζ298 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2927+ζ2924+ζ295+ζ292 | ζ2926+ζ2922+ζ297+ζ293 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2921+ζ2920+ζ299+ζ298 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2927+ζ2924+ζ295+ζ292 | ζ2926+ζ2922+ζ297+ζ293 | ζ2925+ζ2919+ζ2910+ζ294 | orthogonal lifted from C29⋊C4 |
ρ16 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2926+ζ2922+ζ297+ζ293 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2921+ζ2920+ζ299+ζ298 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2927+ζ2924+ζ295+ζ292 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2927+ζ2924+ζ295+ζ292 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2926+ζ2922+ζ297+ζ293 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2921+ζ2920+ζ299+ζ298 | orthogonal lifted from C29⋊C4 |
ρ17 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2927+ζ2924+ζ295+ζ292 | ζ2926+ζ2922+ζ297+ζ293 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2921+ζ2920+ζ299+ζ298 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2921+ζ2920+ζ299+ζ298 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2927+ζ2924+ζ295+ζ292 | ζ2926+ζ2922+ζ297+ζ293 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2923+ζ2915+ζ2914+ζ296 | orthogonal lifted from C29⋊C4 |
ρ18 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2921+ζ2920+ζ299+ζ298 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2927+ζ2924+ζ295+ζ292 | ζ2926+ζ2922+ζ297+ζ293 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2928+ζ2917+ζ2912+ζ29 | -ζ2923-ζ2915-ζ2914-ζ296 | -ζ2928-ζ2917-ζ2912-ζ29 | -ζ2921-ζ2920-ζ299-ζ298 | -ζ2918-ζ2916-ζ2913-ζ2911 | -ζ2927-ζ2924-ζ295-ζ292 | -ζ2926-ζ2922-ζ297-ζ293 | -ζ2925-ζ2919-ζ2910-ζ294 | orthogonal faithful |
ρ19 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2927+ζ2924+ζ295+ζ292 | ζ2926+ζ2922+ζ297+ζ293 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2921+ζ2920+ζ299+ζ298 | -ζ2925-ζ2919-ζ2910-ζ294 | -ζ2921-ζ2920-ζ299-ζ298 | -ζ2923-ζ2915-ζ2914-ζ296 | -ζ2928-ζ2917-ζ2912-ζ29 | -ζ2918-ζ2916-ζ2913-ζ2911 | -ζ2927-ζ2924-ζ295-ζ292 | -ζ2926-ζ2922-ζ297-ζ293 | orthogonal faithful |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2921+ζ2920+ζ299+ζ298 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2927+ζ2924+ζ295+ζ292 | ζ2926+ζ2922+ζ297+ζ293 | ζ2923+ζ2915+ζ2914+ζ296 | -ζ2926-ζ2922-ζ297-ζ293 | -ζ2923-ζ2915-ζ2914-ζ296 | -ζ2925-ζ2919-ζ2910-ζ294 | -ζ2921-ζ2920-ζ299-ζ298 | -ζ2928-ζ2917-ζ2912-ζ29 | -ζ2918-ζ2916-ζ2913-ζ2911 | -ζ2927-ζ2924-ζ295-ζ292 | orthogonal faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2926+ζ2922+ζ297+ζ293 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2921+ζ2920+ζ299+ζ298 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2927+ζ2924+ζ295+ζ292 | -ζ2928-ζ2917-ζ2912-ζ29 | -ζ2927-ζ2924-ζ295-ζ292 | -ζ2918-ζ2916-ζ2913-ζ2911 | -ζ2926-ζ2922-ζ297-ζ293 | -ζ2925-ζ2919-ζ2910-ζ294 | -ζ2923-ζ2915-ζ2914-ζ296 | -ζ2921-ζ2920-ζ299-ζ298 | orthogonal faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ2927+ζ2924+ζ295+ζ292 | ζ2925+ζ2919+ζ2910+ζ294 | ζ2923+ζ2915+ζ2914+ζ296 | ζ2921+ζ2920+ζ299+ζ298 | ζ2928+ζ2917+ζ2912+ζ29 | ζ2918+ζ2916+ζ2913+ζ2911 | ζ2926+ζ2922+ζ297+ζ293 | -ζ2918-ζ2916-ζ2913-ζ2911 | -ζ2926-ζ2922-ζ297-ζ293 | -ζ2927-ζ2924-ζ295-ζ292 | -ζ2925-ζ2919-ζ2910-ζ294 | -ζ2923-ζ2915-ζ2914-ζ296 | -ζ2921-ζ2920-ζ299-ζ298 | -ζ2928-ζ2917-ζ2912-ζ29 | orthogonal faithful |
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 37)(9 38)(10 39)(11 40)(12 41)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 49)(21 50)(22 51)(23 52)(24 53)(25 54)(26 55)(27 56)(28 57)(29 58)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)
(2 13 29 18)(3 25 28 6)(4 8 27 23)(5 20 26 11)(7 15 24 16)(9 10 22 21)(12 17 19 14)(31 42 58 47)(32 54 57 35)(33 37 56 52)(34 49 55 40)(36 44 53 45)(38 39 51 50)(41 46 48 43)
G:=sub<Sym(58)| (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58), (2,13,29,18)(3,25,28,6)(4,8,27,23)(5,20,26,11)(7,15,24,16)(9,10,22,21)(12,17,19,14)(31,42,58,47)(32,54,57,35)(33,37,56,52)(34,49,55,40)(36,44,53,45)(38,39,51,50)(41,46,48,43)>;
G:=Group( (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58), (2,13,29,18)(3,25,28,6)(4,8,27,23)(5,20,26,11)(7,15,24,16)(9,10,22,21)(12,17,19,14)(31,42,58,47)(32,54,57,35)(33,37,56,52)(34,49,55,40)(36,44,53,45)(38,39,51,50)(41,46,48,43) );
G=PermutationGroup([[(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,37),(9,38),(10,39),(11,40),(12,41),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,49),(21,50),(22,51),(23,52),(24,53),(25,54),(26,55),(27,56),(28,57),(29,58)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)], [(2,13,29,18),(3,25,28,6),(4,8,27,23),(5,20,26,11),(7,15,24,16),(9,10,22,21),(12,17,19,14),(31,42,58,47),(32,54,57,35),(33,37,56,52),(34,49,55,40),(36,44,53,45),(38,39,51,50),(41,46,48,43)]])
C2×C29⋊C4 is a maximal subgroup of
C116⋊C4 D29.D4
C2×C29⋊C4 is a maximal quotient of D29⋊C8 C116.C4 C116⋊C4 C29⋊M4(2) D29.D4
Matrix representation of C2×C29⋊C4 ►in GL4(𝔽233) generated by
232 | 0 | 0 | 0 |
0 | 232 | 0 | 0 |
0 | 0 | 232 | 0 |
0 | 0 | 0 | 232 |
209 | 24 | 30 | 232 |
210 | 24 | 30 | 232 |
209 | 25 | 30 | 232 |
209 | 24 | 31 | 232 |
51 | 61 | 23 | 120 |
203 | 209 | 24 | 30 |
230 | 92 | 229 | 210 |
6 | 83 | 163 | 210 |
G:=sub<GL(4,GF(233))| [232,0,0,0,0,232,0,0,0,0,232,0,0,0,0,232],[209,210,209,209,24,24,25,24,30,30,30,31,232,232,232,232],[51,203,230,6,61,209,92,83,23,24,229,163,120,30,210,210] >;
C2×C29⋊C4 in GAP, Magma, Sage, TeX
C_2\times C_{29}\rtimes C_4
% in TeX
G:=Group("C2xC29:C4");
// GroupNames label
G:=SmallGroup(232,12);
// by ID
G=gap.SmallGroup(232,12);
# by ID
G:=PCGroup([4,-2,-2,-2,-29,16,1539,907]);
// Polycyclic
G:=Group<a,b,c|a^2=b^29=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^17>;
// generators/relations
Export
Subgroup lattice of C2×C29⋊C4 in TeX
Character table of C2×C29⋊C4 in TeX