Copied to
clipboard

G = C2×C29⋊C4order 232 = 23·29

Direct product of C2 and C29⋊C4

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C29⋊C4, C58⋊C4, D29⋊C4, D58.C2, D29.C22, C29⋊(C2×C4), SmallGroup(232,12)

Series: Derived Chief Lower central Upper central

C1C29 — C2×C29⋊C4
C1C29D29C29⋊C4 — C2×C29⋊C4
C29 — C2×C29⋊C4
C1C2

Generators and relations for C2×C29⋊C4
 G = < a,b,c | a2=b29=c4=1, ab=ba, ac=ca, cbc-1=b17 >

29C2
29C2
29C4
29C22
29C4
29C2×C4

Character table of C2×C29⋊C4

 class 12A2B2C4A4B4C4D29A29B29C29D29E29F29G58A58B58C58D58E58F58G
 size 1129292929292944444444444444
ρ11111111111111111111111    trivial
ρ21-11-11-11-11111111-1-1-1-1-1-1-1    linear of order 2
ρ31-11-1-11-111111111-1-1-1-1-1-1-1    linear of order 2
ρ41111-1-1-1-111111111111111    linear of order 2
ρ511-1-1ii-i-i11111111111111    linear of order 4
ρ61-1-11i-i-ii1111111-1-1-1-1-1-1-1    linear of order 4
ρ71-1-11-iii-i1111111-1-1-1-1-1-1-1    linear of order 4
ρ811-1-1-i-iii11111111111111    linear of order 4
ρ94-4000000ζ29282917291229ζ29272924295292ζ29262922297293ζ292529192910294ζ292329152914296ζ29212920299298ζ2918291629132911292129202992982918291629132911292829172912292927292429529229262922297293292529192910294292329152914296    orthogonal faithful
ρ1044000000ζ292529192910294ζ29212920299298ζ29282917291229ζ2918291629132911ζ29272924295292ζ29262922297293ζ292329152914296ζ29262922297293ζ292329152914296ζ292529192910294ζ29212920299298ζ29282917291229ζ2918291629132911ζ29272924295292    orthogonal lifted from C29⋊C4
ρ1144000000ζ29272924295292ζ292529192910294ζ292329152914296ζ29212920299298ζ29282917291229ζ2918291629132911ζ29262922297293ζ2918291629132911ζ29262922297293ζ29272924295292ζ292529192910294ζ292329152914296ζ29212920299298ζ29282917291229    orthogonal lifted from C29⋊C4
ρ1244000000ζ292329152914296ζ29282917291229ζ2918291629132911ζ29272924295292ζ29262922297293ζ292529192910294ζ29212920299298ζ292529192910294ζ29212920299298ζ292329152914296ζ29282917291229ζ2918291629132911ζ29272924295292ζ29262922297293    orthogonal lifted from C29⋊C4
ρ134-4000000ζ29262922297293ζ292329152914296ζ29212920299298ζ29282917291229ζ2918291629132911ζ29272924295292ζ292529192910294292729242952922925291929102942926292229729329232915291429629212920299298292829172912292918291629132911    orthogonal faithful
ρ1444000000ζ29262922297293ζ292329152914296ζ29212920299298ζ29282917291229ζ2918291629132911ζ29272924295292ζ292529192910294ζ29272924295292ζ292529192910294ζ29262922297293ζ292329152914296ζ29212920299298ζ29282917291229ζ2918291629132911    orthogonal lifted from C29⋊C4
ρ1544000000ζ29212920299298ζ2918291629132911ζ29272924295292ζ29262922297293ζ292529192910294ζ292329152914296ζ29282917291229ζ292329152914296ζ29282917291229ζ29212920299298ζ2918291629132911ζ29272924295292ζ29262922297293ζ292529192910294    orthogonal lifted from C29⋊C4
ρ1644000000ζ2918291629132911ζ29262922297293ζ292529192910294ζ292329152914296ζ29212920299298ζ29282917291229ζ29272924295292ζ29282917291229ζ29272924295292ζ2918291629132911ζ29262922297293ζ292529192910294ζ292329152914296ζ29212920299298    orthogonal lifted from C29⋊C4
ρ1744000000ζ29282917291229ζ29272924295292ζ29262922297293ζ292529192910294ζ292329152914296ζ29212920299298ζ2918291629132911ζ29212920299298ζ2918291629132911ζ29282917291229ζ29272924295292ζ29262922297293ζ292529192910294ζ292329152914296    orthogonal lifted from C29⋊C4
ρ184-4000000ζ29212920299298ζ2918291629132911ζ29272924295292ζ29262922297293ζ292529192910294ζ292329152914296ζ29282917291229292329152914296292829172912292921292029929829182916291329112927292429529229262922297293292529192910294    orthogonal faithful
ρ194-4000000ζ292329152914296ζ29282917291229ζ2918291629132911ζ29272924295292ζ29262922297293ζ292529192910294ζ29212920299298292529192910294292129202992982923291529142962928291729122929182916291329112927292429529229262922297293    orthogonal faithful
ρ204-4000000ζ292529192910294ζ29212920299298ζ29282917291229ζ2918291629132911ζ29272924295292ζ29262922297293ζ292329152914296292629222972932923291529142962925291929102942921292029929829282917291229291829162913291129272924295292    orthogonal faithful
ρ214-4000000ζ2918291629132911ζ29262922297293ζ292529192910294ζ292329152914296ζ29212920299298ζ29282917291229ζ29272924295292292829172912292927292429529229182916291329112926292229729329252919291029429232915291429629212920299298    orthogonal faithful
ρ224-4000000ζ29272924295292ζ292529192910294ζ292329152914296ζ29212920299298ζ29282917291229ζ2918291629132911ζ29262922297293291829162913291129262922297293292729242952922925291929102942923291529142962921292029929829282917291229    orthogonal faithful

Smallest permutation representation of C2×C29⋊C4
On 58 points
Generators in S58
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 37)(9 38)(10 39)(11 40)(12 41)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 49)(21 50)(22 51)(23 52)(24 53)(25 54)(26 55)(27 56)(28 57)(29 58)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58)
(2 13 29 18)(3 25 28 6)(4 8 27 23)(5 20 26 11)(7 15 24 16)(9 10 22 21)(12 17 19 14)(31 42 58 47)(32 54 57 35)(33 37 56 52)(34 49 55 40)(36 44 53 45)(38 39 51 50)(41 46 48 43)

G:=sub<Sym(58)| (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58), (2,13,29,18)(3,25,28,6)(4,8,27,23)(5,20,26,11)(7,15,24,16)(9,10,22,21)(12,17,19,14)(31,42,58,47)(32,54,57,35)(33,37,56,52)(34,49,55,40)(36,44,53,45)(38,39,51,50)(41,46,48,43)>;

G:=Group( (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,40)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58), (2,13,29,18)(3,25,28,6)(4,8,27,23)(5,20,26,11)(7,15,24,16)(9,10,22,21)(12,17,19,14)(31,42,58,47)(32,54,57,35)(33,37,56,52)(34,49,55,40)(36,44,53,45)(38,39,51,50)(41,46,48,43) );

G=PermutationGroup([[(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,37),(9,38),(10,39),(11,40),(12,41),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,49),(21,50),(22,51),(23,52),(24,53),(25,54),(26,55),(27,56),(28,57),(29,58)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58)], [(2,13,29,18),(3,25,28,6),(4,8,27,23),(5,20,26,11),(7,15,24,16),(9,10,22,21),(12,17,19,14),(31,42,58,47),(32,54,57,35),(33,37,56,52),(34,49,55,40),(36,44,53,45),(38,39,51,50),(41,46,48,43)]])

C2×C29⋊C4 is a maximal subgroup of   C116⋊C4  D29.D4
C2×C29⋊C4 is a maximal quotient of   D29⋊C8  C116.C4  C116⋊C4  C29⋊M4(2)  D29.D4

Matrix representation of C2×C29⋊C4 in GL4(𝔽233) generated by

232000
023200
002320
000232
,
2092430232
2102430232
2092530232
2092431232
,
516123120
2032092430
23092229210
683163210
G:=sub<GL(4,GF(233))| [232,0,0,0,0,232,0,0,0,0,232,0,0,0,0,232],[209,210,209,209,24,24,25,24,30,30,30,31,232,232,232,232],[51,203,230,6,61,209,92,83,23,24,229,163,120,30,210,210] >;

C2×C29⋊C4 in GAP, Magma, Sage, TeX

C_2\times C_{29}\rtimes C_4
% in TeX

G:=Group("C2xC29:C4");
// GroupNames label

G:=SmallGroup(232,12);
// by ID

G=gap.SmallGroup(232,12);
# by ID

G:=PCGroup([4,-2,-2,-2,-29,16,1539,907]);
// Polycyclic

G:=Group<a,b,c|a^2=b^29=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^17>;
// generators/relations

Export

Subgroup lattice of C2×C29⋊C4 in TeX
Character table of C2×C29⋊C4 in TeX

׿
×
𝔽