Copied to
clipboard

G = C5×D23order 230 = 2·5·23

Direct product of C5 and D23

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C5×D23, C23⋊C10, C1152C2, SmallGroup(230,2)

Series: Derived Chief Lower central Upper central

C1C23 — C5×D23
C1C23C115 — C5×D23
C23 — C5×D23
C1C5

Generators and relations for C5×D23
 G = < a,b,c | a5=b23=c2=1, ab=ba, ac=ca, cbc=b-1 >

23C2
23C10

Smallest permutation representation of C5×D23
On 115 points
Generators in S115
(1 107 84 50 40)(2 108 85 51 41)(3 109 86 52 42)(4 110 87 53 43)(5 111 88 54 44)(6 112 89 55 45)(7 113 90 56 46)(8 114 91 57 24)(9 115 92 58 25)(10 93 70 59 26)(11 94 71 60 27)(12 95 72 61 28)(13 96 73 62 29)(14 97 74 63 30)(15 98 75 64 31)(16 99 76 65 32)(17 100 77 66 33)(18 101 78 67 34)(19 102 79 68 35)(20 103 80 69 36)(21 104 81 47 37)(22 105 82 48 38)(23 106 83 49 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)(24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69)(70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)(93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 15)(10 14)(11 13)(24 32)(25 31)(26 30)(27 29)(33 46)(34 45)(35 44)(36 43)(37 42)(38 41)(39 40)(47 52)(48 51)(49 50)(53 69)(54 68)(55 67)(56 66)(57 65)(58 64)(59 63)(60 62)(70 74)(71 73)(75 92)(76 91)(77 90)(78 89)(79 88)(80 87)(81 86)(82 85)(83 84)(93 97)(94 96)(98 115)(99 114)(100 113)(101 112)(102 111)(103 110)(104 109)(105 108)(106 107)

G:=sub<Sym(115)| (1,107,84,50,40)(2,108,85,51,41)(3,109,86,52,42)(4,110,87,53,43)(5,111,88,54,44)(6,112,89,55,45)(7,113,90,56,46)(8,114,91,57,24)(9,115,92,58,25)(10,93,70,59,26)(11,94,71,60,27)(12,95,72,61,28)(13,96,73,62,29)(14,97,74,63,30)(15,98,75,64,31)(16,99,76,65,32)(17,100,77,66,33)(18,101,78,67,34)(19,102,79,68,35)(20,103,80,69,36)(21,104,81,47,37)(22,105,82,48,38)(23,106,83,49,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(24,32)(25,31)(26,30)(27,29)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,40)(47,52)(48,51)(49,50)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)(70,74)(71,73)(75,92)(76,91)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(93,97)(94,96)(98,115)(99,114)(100,113)(101,112)(102,111)(103,110)(104,109)(105,108)(106,107)>;

G:=Group( (1,107,84,50,40)(2,108,85,51,41)(3,109,86,52,42)(4,110,87,53,43)(5,111,88,54,44)(6,112,89,55,45)(7,113,90,56,46)(8,114,91,57,24)(9,115,92,58,25)(10,93,70,59,26)(11,94,71,60,27)(12,95,72,61,28)(13,96,73,62,29)(14,97,74,63,30)(15,98,75,64,31)(16,99,76,65,32)(17,100,77,66,33)(18,101,78,67,34)(19,102,79,68,35)(20,103,80,69,36)(21,104,81,47,37)(22,105,82,48,38)(23,106,83,49,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(24,32)(25,31)(26,30)(27,29)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,40)(47,52)(48,51)(49,50)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)(70,74)(71,73)(75,92)(76,91)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(93,97)(94,96)(98,115)(99,114)(100,113)(101,112)(102,111)(103,110)(104,109)(105,108)(106,107) );

G=PermutationGroup([[(1,107,84,50,40),(2,108,85,51,41),(3,109,86,52,42),(4,110,87,53,43),(5,111,88,54,44),(6,112,89,55,45),(7,113,90,56,46),(8,114,91,57,24),(9,115,92,58,25),(10,93,70,59,26),(11,94,71,60,27),(12,95,72,61,28),(13,96,73,62,29),(14,97,74,63,30),(15,98,75,64,31),(16,99,76,65,32),(17,100,77,66,33),(18,101,78,67,34),(19,102,79,68,35),(20,103,80,69,36),(21,104,81,47,37),(22,105,82,48,38),(23,106,83,49,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69),(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92),(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,16),(9,15),(10,14),(11,13),(24,32),(25,31),(26,30),(27,29),(33,46),(34,45),(35,44),(36,43),(37,42),(38,41),(39,40),(47,52),(48,51),(49,50),(53,69),(54,68),(55,67),(56,66),(57,65),(58,64),(59,63),(60,62),(70,74),(71,73),(75,92),(76,91),(77,90),(78,89),(79,88),(80,87),(81,86),(82,85),(83,84),(93,97),(94,96),(98,115),(99,114),(100,113),(101,112),(102,111),(103,110),(104,109),(105,108),(106,107)]])

65 conjugacy classes

class 1  2 5A5B5C5D10A10B10C10D23A···23K115A···115AR
order1255551010101023···23115···115
size1231111232323232···22···2

65 irreducible representations

dim111122
type+++
imageC1C2C5C10D23C5×D23
kernelC5×D23C115D23C23C5C1
# reps11441144

Matrix representation of C5×D23 in GL2(𝔽461) generated by

3680
0368
,
01
460418
,
01
10
G:=sub<GL(2,GF(461))| [368,0,0,368],[0,460,1,418],[0,1,1,0] >;

C5×D23 in GAP, Magma, Sage, TeX

C_5\times D_{23}
% in TeX

G:=Group("C5xD23");
// GroupNames label

G:=SmallGroup(230,2);
// by ID

G=gap.SmallGroup(230,2);
# by ID

G:=PCGroup([3,-2,-5,-23,1982]);
// Polycyclic

G:=Group<a,b,c|a^5=b^23=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C5×D23 in TeX

׿
×
𝔽