direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C5×D23, C23⋊C10, C115⋊2C2, SmallGroup(230,2)
Series: Derived ►Chief ►Lower central ►Upper central
| C23 — C5×D23 |
Generators and relations for C5×D23
G = < a,b,c | a5=b23=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 107 84 50 40)(2 108 85 51 41)(3 109 86 52 42)(4 110 87 53 43)(5 111 88 54 44)(6 112 89 55 45)(7 113 90 56 46)(8 114 91 57 24)(9 115 92 58 25)(10 93 70 59 26)(11 94 71 60 27)(12 95 72 61 28)(13 96 73 62 29)(14 97 74 63 30)(15 98 75 64 31)(16 99 76 65 32)(17 100 77 66 33)(18 101 78 67 34)(19 102 79 68 35)(20 103 80 69 36)(21 104 81 47 37)(22 105 82 48 38)(23 106 83 49 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)(24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69)(70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92)(93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 16)(9 15)(10 14)(11 13)(24 32)(25 31)(26 30)(27 29)(33 46)(34 45)(35 44)(36 43)(37 42)(38 41)(39 40)(47 52)(48 51)(49 50)(53 69)(54 68)(55 67)(56 66)(57 65)(58 64)(59 63)(60 62)(70 74)(71 73)(75 92)(76 91)(77 90)(78 89)(79 88)(80 87)(81 86)(82 85)(83 84)(93 97)(94 96)(98 115)(99 114)(100 113)(101 112)(102 111)(103 110)(104 109)(105 108)(106 107)
G:=sub<Sym(115)| (1,107,84,50,40)(2,108,85,51,41)(3,109,86,52,42)(4,110,87,53,43)(5,111,88,54,44)(6,112,89,55,45)(7,113,90,56,46)(8,114,91,57,24)(9,115,92,58,25)(10,93,70,59,26)(11,94,71,60,27)(12,95,72,61,28)(13,96,73,62,29)(14,97,74,63,30)(15,98,75,64,31)(16,99,76,65,32)(17,100,77,66,33)(18,101,78,67,34)(19,102,79,68,35)(20,103,80,69,36)(21,104,81,47,37)(22,105,82,48,38)(23,106,83,49,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(24,32)(25,31)(26,30)(27,29)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,40)(47,52)(48,51)(49,50)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)(70,74)(71,73)(75,92)(76,91)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(93,97)(94,96)(98,115)(99,114)(100,113)(101,112)(102,111)(103,110)(104,109)(105,108)(106,107)>;
G:=Group( (1,107,84,50,40)(2,108,85,51,41)(3,109,86,52,42)(4,110,87,53,43)(5,111,88,54,44)(6,112,89,55,45)(7,113,90,56,46)(8,114,91,57,24)(9,115,92,58,25)(10,93,70,59,26)(11,94,71,60,27)(12,95,72,61,28)(13,96,73,62,29)(14,97,74,63,30)(15,98,75,64,31)(16,99,76,65,32)(17,100,77,66,33)(18,101,78,67,34)(19,102,79,68,35)(20,103,80,69,36)(21,104,81,47,37)(22,105,82,48,38)(23,106,83,49,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69)(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92)(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)(24,32)(25,31)(26,30)(27,29)(33,46)(34,45)(35,44)(36,43)(37,42)(38,41)(39,40)(47,52)(48,51)(49,50)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)(70,74)(71,73)(75,92)(76,91)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(93,97)(94,96)(98,115)(99,114)(100,113)(101,112)(102,111)(103,110)(104,109)(105,108)(106,107) );
G=PermutationGroup([[(1,107,84,50,40),(2,108,85,51,41),(3,109,86,52,42),(4,110,87,53,43),(5,111,88,54,44),(6,112,89,55,45),(7,113,90,56,46),(8,114,91,57,24),(9,115,92,58,25),(10,93,70,59,26),(11,94,71,60,27),(12,95,72,61,28),(13,96,73,62,29),(14,97,74,63,30),(15,98,75,64,31),(16,99,76,65,32),(17,100,77,66,33),(18,101,78,67,34),(19,102,79,68,35),(20,103,80,69,36),(21,104,81,47,37),(22,105,82,48,38),(23,106,83,49,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23),(24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69),(70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92),(93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,16),(9,15),(10,14),(11,13),(24,32),(25,31),(26,30),(27,29),(33,46),(34,45),(35,44),(36,43),(37,42),(38,41),(39,40),(47,52),(48,51),(49,50),(53,69),(54,68),(55,67),(56,66),(57,65),(58,64),(59,63),(60,62),(70,74),(71,73),(75,92),(76,91),(77,90),(78,89),(79,88),(80,87),(81,86),(82,85),(83,84),(93,97),(94,96),(98,115),(99,114),(100,113),(101,112),(102,111),(103,110),(104,109),(105,108),(106,107)]])
65 conjugacy classes
| class | 1 | 2 | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 23A | ··· | 23K | 115A | ··· | 115AR |
| order | 1 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 23 | ··· | 23 | 115 | ··· | 115 |
| size | 1 | 23 | 1 | 1 | 1 | 1 | 23 | 23 | 23 | 23 | 2 | ··· | 2 | 2 | ··· | 2 |
65 irreducible representations
| dim | 1 | 1 | 1 | 1 | 2 | 2 |
| type | + | + | + | |||
| image | C1 | C2 | C5 | C10 | D23 | C5×D23 |
| kernel | C5×D23 | C115 | D23 | C23 | C5 | C1 |
| # reps | 1 | 1 | 4 | 4 | 11 | 44 |
Matrix representation of C5×D23 ►in GL2(𝔽461) generated by
| 368 | 0 |
| 0 | 368 |
| 0 | 1 |
| 460 | 418 |
| 0 | 1 |
| 1 | 0 |
G:=sub<GL(2,GF(461))| [368,0,0,368],[0,460,1,418],[0,1,1,0] >;
C5×D23 in GAP, Magma, Sage, TeX
C_5\times D_{23} % in TeX
G:=Group("C5xD23"); // GroupNames label
G:=SmallGroup(230,2);
// by ID
G=gap.SmallGroup(230,2);
# by ID
G:=PCGroup([3,-2,-5,-23,1982]);
// Polycyclic
G:=Group<a,b,c|a^5=b^23=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export