Extensions 1→N→G→Q→1 with N=C4 and Q=C7×D4

Direct product G=N×Q with N=C4 and Q=C7×D4
dρLabelID
D4×C28112D4xC28224,153

Semidirect products G=N:Q with N=C4 and Q=C7×D4
extensionφ:Q→Aut NdρLabelID
C41(C7×D4) = C7×C41D4φ: C7×D4/C28C2 ⊆ Aut C4112C4:1(C7xD4)224,162
C42(C7×D4) = C7×C4⋊D4φ: C7×D4/C2×C14C2 ⊆ Aut C4112C4:2(C7xD4)224,156

Non-split extensions G=N.Q with N=C4 and Q=C7×D4
extensionφ:Q→Aut NdρLabelID
C4.1(C7×D4) = C7×D16φ: C7×D4/C28C2 ⊆ Aut C41122C4.1(C7xD4)224,60
C4.2(C7×D4) = C7×SD32φ: C7×D4/C28C2 ⊆ Aut C41122C4.2(C7xD4)224,61
C4.3(C7×D4) = C7×Q32φ: C7×D4/C28C2 ⊆ Aut C42242C4.3(C7xD4)224,62
C4.4(C7×D4) = C7×C4.4D4φ: C7×D4/C28C2 ⊆ Aut C4112C4.4(C7xD4)224,159
C4.5(C7×D4) = C7×C4⋊Q8φ: C7×D4/C28C2 ⊆ Aut C4224C4.5(C7xD4)224,163
C4.6(C7×D4) = C14×D8φ: C7×D4/C28C2 ⊆ Aut C4112C4.6(C7xD4)224,167
C4.7(C7×D4) = C14×SD16φ: C7×D4/C28C2 ⊆ Aut C4112C4.7(C7xD4)224,168
C4.8(C7×D4) = C14×Q16φ: C7×D4/C28C2 ⊆ Aut C4224C4.8(C7xD4)224,169
C4.9(C7×D4) = C7×C4.D4φ: C7×D4/C2×C14C2 ⊆ Aut C4564C4.9(C7xD4)224,49
C4.10(C7×D4) = C7×C4.10D4φ: C7×D4/C2×C14C2 ⊆ Aut C41124C4.10(C7xD4)224,50
C4.11(C7×D4) = C7×D4⋊C4φ: C7×D4/C2×C14C2 ⊆ Aut C4112C4.11(C7xD4)224,51
C4.12(C7×D4) = C7×Q8⋊C4φ: C7×D4/C2×C14C2 ⊆ Aut C4224C4.12(C7xD4)224,52
C4.13(C7×D4) = C7×C22⋊Q8φ: C7×D4/C2×C14C2 ⊆ Aut C4112C4.13(C7xD4)224,157
C4.14(C7×D4) = C7×C8⋊C22φ: C7×D4/C2×C14C2 ⊆ Aut C4564C4.14(C7xD4)224,171
C4.15(C7×D4) = C7×C8.C22φ: C7×D4/C2×C14C2 ⊆ Aut C41124C4.15(C7xD4)224,172
C4.16(C7×D4) = C7×C22⋊C8central extension (φ=1)112C4.16(C7xD4)224,47
C4.17(C7×D4) = C7×C4≀C2central extension (φ=1)562C4.17(C7xD4)224,53
C4.18(C7×D4) = C7×C4⋊C8central extension (φ=1)224C4.18(C7xD4)224,54
C4.19(C7×D4) = C7×C8.C4central extension (φ=1)1122C4.19(C7xD4)224,57
C4.20(C7×D4) = C7×C4○D8central extension (φ=1)1122C4.20(C7xD4)224,170

׿
×
𝔽