Copied to
clipboard

G = D4xC28order 224 = 25·7

Direct product of C28 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4xC28, C42:4C14, C4:C4:7C14, C4:1(C2xC28), C28:6(C2xC4), (C4xC28):11C2, C2.3(D4xC14), C22:C4:6C14, (C22xC28):4C2, C22:1(C2xC28), (C22xC4):2C14, (C2xD4).7C14, C14.66(C2xD4), (D4xC14).14C2, C2.4(C22xC28), C23.7(C2xC14), C14.39(C4oD4), (C2xC14).73C23, C14.32(C22xC4), (C2xC28).121C22, C22.7(C22xC14), (C22xC14).26C22, (C7xC4:C4):16C2, (C2xC14):4(C2xC4), (C2xC28)o(D4xC14), C2.2(C7xC4oD4), (C7xC22:C4):14C2, (C2xC4).15(C2xC14), (C2xC28)o(C7xC4:C4), (C2xC28)o(C7xC22:C4), SmallGroup(224,153)

Series: Derived Chief Lower central Upper central

C1C2 — D4xC28
C1C2C22C2xC14C2xC28C7xC22:C4 — D4xC28
C1C2 — D4xC28
C1C2xC28 — D4xC28

Generators and relations for D4xC28
 G = < a,b,c | a28=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 124 in 94 conjugacy classes, 64 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C2xC4, C2xC4, C2xC4, D4, C23, C14, C14, C42, C22:C4, C4:C4, C22xC4, C2xD4, C28, C28, C2xC14, C2xC14, C2xC14, C4xD4, C2xC28, C2xC28, C2xC28, C7xD4, C22xC14, C4xC28, C7xC22:C4, C7xC4:C4, C22xC28, D4xC14, D4xC28
Quotients: C1, C2, C4, C22, C7, C2xC4, D4, C23, C14, C22xC4, C2xD4, C4oD4, C28, C2xC14, C4xD4, C2xC28, C7xD4, C22xC14, C22xC28, D4xC14, C7xC4oD4, D4xC28

Smallest permutation representation of D4xC28
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 108 67 30)(2 109 68 31)(3 110 69 32)(4 111 70 33)(5 112 71 34)(6 85 72 35)(7 86 73 36)(8 87 74 37)(9 88 75 38)(10 89 76 39)(11 90 77 40)(12 91 78 41)(13 92 79 42)(14 93 80 43)(15 94 81 44)(16 95 82 45)(17 96 83 46)(18 97 84 47)(19 98 57 48)(20 99 58 49)(21 100 59 50)(22 101 60 51)(23 102 61 52)(24 103 62 53)(25 104 63 54)(26 105 64 55)(27 106 65 56)(28 107 66 29)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 93)(30 94)(31 95)(32 96)(33 97)(34 98)(35 99)(36 100)(37 101)(38 102)(39 103)(40 104)(41 105)(42 106)(43 107)(44 108)(45 109)(46 110)(47 111)(48 112)(49 85)(50 86)(51 87)(52 88)(53 89)(54 90)(55 91)(56 92)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,108,67,30)(2,109,68,31)(3,110,69,32)(4,111,70,33)(5,112,71,34)(6,85,72,35)(7,86,73,36)(8,87,74,37)(9,88,75,38)(10,89,76,39)(11,90,77,40)(12,91,78,41)(13,92,79,42)(14,93,80,43)(15,94,81,44)(16,95,82,45)(17,96,83,46)(18,97,84,47)(19,98,57,48)(20,99,58,49)(21,100,59,50)(22,101,60,51)(23,102,61,52)(24,103,62,53)(25,104,63,54)(26,105,64,55)(27,106,65,56)(28,107,66,29), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,99)(36,100)(37,101)(38,102)(39,103)(40,104)(41,105)(42,106)(43,107)(44,108)(45,109)(46,110)(47,111)(48,112)(49,85)(50,86)(51,87)(52,88)(53,89)(54,90)(55,91)(56,92)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,108,67,30)(2,109,68,31)(3,110,69,32)(4,111,70,33)(5,112,71,34)(6,85,72,35)(7,86,73,36)(8,87,74,37)(9,88,75,38)(10,89,76,39)(11,90,77,40)(12,91,78,41)(13,92,79,42)(14,93,80,43)(15,94,81,44)(16,95,82,45)(17,96,83,46)(18,97,84,47)(19,98,57,48)(20,99,58,49)(21,100,59,50)(22,101,60,51)(23,102,61,52)(24,103,62,53)(25,104,63,54)(26,105,64,55)(27,106,65,56)(28,107,66,29), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,99)(36,100)(37,101)(38,102)(39,103)(40,104)(41,105)(42,106)(43,107)(44,108)(45,109)(46,110)(47,111)(48,112)(49,85)(50,86)(51,87)(52,88)(53,89)(54,90)(55,91)(56,92)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,108,67,30),(2,109,68,31),(3,110,69,32),(4,111,70,33),(5,112,71,34),(6,85,72,35),(7,86,73,36),(8,87,74,37),(9,88,75,38),(10,89,76,39),(11,90,77,40),(12,91,78,41),(13,92,79,42),(14,93,80,43),(15,94,81,44),(16,95,82,45),(17,96,83,46),(18,97,84,47),(19,98,57,48),(20,99,58,49),(21,100,59,50),(22,101,60,51),(23,102,61,52),(24,103,62,53),(25,104,63,54),(26,105,64,55),(27,106,65,56),(28,107,66,29)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,93),(30,94),(31,95),(32,96),(33,97),(34,98),(35,99),(36,100),(37,101),(38,102),(39,103),(40,104),(41,105),(42,106),(43,107),(44,108),(45,109),(46,110),(47,111),(48,112),(49,85),(50,86),(51,87),(52,88),(53,89),(54,90),(55,91),(56,92),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84)]])

D4xC28 is a maximal subgroup of
C28.57D8  C28.50D8  C28.38SD16  D4.3Dic14  C42.47D14  C28:3M4(2)  C42.48D14  C28:7D8  D4.1D28  C42.51D14  D4.2D28  C42.102D14  D4:5Dic14  C42.104D14  C42.105D14  C42.106D14  D4:6Dic14  C42:11D14  C42.108D14  C42:12D14  C42.228D14  D28:23D4  D28:24D4  Dic14:23D4  Dic14:24D4  D4:5D28  D4:6D28  C42:16D14  C42.229D14  C42.113D14  C42.114D14  C42:17D14  C42.115D14  C42.116D14  C42.117D14  C42.118D14  C42.119D14

140 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4L7A···7F14A···14R14S···14AP28A···28X28Y···28BT
order1222222244444···47···714···1414···1428···2828···28
size1111222211112···21···11···12···21···12···2

140 irreducible representations

dim111111111111112222
type+++++++
imageC1C2C2C2C2C2C4C7C14C14C14C14C14C28D4C4oD4C7xD4C7xC4oD4
kernelD4xC28C4xC28C7xC22:C4C7xC4:C4C22xC28D4xC14C7xD4C4xD4C42C22:C4C4:C4C22xC4C2xD4D4C28C14C4C2
# reps11212186612612648221212

Matrix representation of D4xC28 in GL3(F29) generated by

1200
0200
0020
,
100
012
02828
,
100
010
02828
G:=sub<GL(3,GF(29))| [12,0,0,0,20,0,0,0,20],[1,0,0,0,1,28,0,2,28],[1,0,0,0,1,28,0,0,28] >;

D4xC28 in GAP, Magma, Sage, TeX

D_4\times C_{28}
% in TeX

G:=Group("D4xC28");
// GroupNames label

G:=SmallGroup(224,153);
// by ID

G=gap.SmallGroup(224,153);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,672,697,518]);
// Polycyclic

G:=Group<a,b,c|a^28=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<