Copied to
clipboard

G = C7xC4.D4order 224 = 25·7

Direct product of C7 and C4.D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7xC4.D4, C23.C28, C28.58D4, M4(2):3C14, C4.9(C7xD4), (D4xC14).8C2, (C2xD4).2C14, (C7xM4(2)):9C2, C22.3(C2xC28), (C22xC14).1C4, (C2xC28).59C22, C14.22(C22:C4), (C2xC4).1(C2xC14), C2.4(C7xC22:C4), (C2xC14).20(C2xC4), SmallGroup(224,49)

Series: Derived Chief Lower central Upper central

C1C22 — C7xC4.D4
C1C2C4C2xC4C2xC28C7xM4(2) — C7xC4.D4
C1C2C22 — C7xC4.D4
C1C14C2xC28 — C7xC4.D4

Generators and relations for C7xC4.D4
 G = < a,b,c,d | a7=b4=1, c4=b2, d2=b, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=b-1c3 >

Subgroups: 84 in 46 conjugacy classes, 24 normal (12 characteristic)
Quotients: C1, C2, C4, C22, C7, C2xC4, D4, C14, C22:C4, C28, C2xC14, C4.D4, C2xC28, C7xD4, C7xC22:C4, C7xC4.D4
2C2
4C2
4C2
2C22
2C22
4C22
4C22
2C14
4C14
4C14
2D4
2C8
2D4
2C8
2C2xC14
2C2xC14
4C2xC14
4C2xC14
2C7xD4
2C56
2C56
2C7xD4

Smallest permutation representation of C7xC4.D4
On 56 points
Generators in S56
(1 27 17 53 16 45 35)(2 28 18 54 9 46 36)(3 29 19 55 10 47 37)(4 30 20 56 11 48 38)(5 31 21 49 12 41 39)(6 32 22 50 13 42 40)(7 25 23 51 14 43 33)(8 26 24 52 15 44 34)
(1 3 5 7)(2 8 6 4)(9 15 13 11)(10 12 14 16)(17 19 21 23)(18 24 22 20)(25 27 29 31)(26 32 30 28)(33 35 37 39)(34 40 38 36)(41 43 45 47)(42 48 46 44)(49 51 53 55)(50 56 54 52)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)
(1 4 3 2 5 8 7 6)(9 12 15 14 13 16 11 10)(17 20 19 18 21 24 23 22)(25 32 27 30 29 28 31 26)(33 40 35 38 37 36 39 34)(41 44 43 42 45 48 47 46)(49 52 51 50 53 56 55 54)

G:=sub<Sym(56)| (1,27,17,53,16,45,35)(2,28,18,54,9,46,36)(3,29,19,55,10,47,37)(4,30,20,56,11,48,38)(5,31,21,49,12,41,39)(6,32,22,50,13,42,40)(7,25,23,51,14,43,33)(8,26,24,52,15,44,34), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,4,3,2,5,8,7,6)(9,12,15,14,13,16,11,10)(17,20,19,18,21,24,23,22)(25,32,27,30,29,28,31,26)(33,40,35,38,37,36,39,34)(41,44,43,42,45,48,47,46)(49,52,51,50,53,56,55,54)>;

G:=Group( (1,27,17,53,16,45,35)(2,28,18,54,9,46,36)(3,29,19,55,10,47,37)(4,30,20,56,11,48,38)(5,31,21,49,12,41,39)(6,32,22,50,13,42,40)(7,25,23,51,14,43,33)(8,26,24,52,15,44,34), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,4,3,2,5,8,7,6)(9,12,15,14,13,16,11,10)(17,20,19,18,21,24,23,22)(25,32,27,30,29,28,31,26)(33,40,35,38,37,36,39,34)(41,44,43,42,45,48,47,46)(49,52,51,50,53,56,55,54) );

G=PermutationGroup([[(1,27,17,53,16,45,35),(2,28,18,54,9,46,36),(3,29,19,55,10,47,37),(4,30,20,56,11,48,38),(5,31,21,49,12,41,39),(6,32,22,50,13,42,40),(7,25,23,51,14,43,33),(8,26,24,52,15,44,34)], [(1,3,5,7),(2,8,6,4),(9,15,13,11),(10,12,14,16),(17,19,21,23),(18,24,22,20),(25,27,29,31),(26,32,30,28),(33,35,37,39),(34,40,38,36),(41,43,45,47),(42,48,46,44),(49,51,53,55),(50,56,54,52)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56)], [(1,4,3,2,5,8,7,6),(9,12,15,14,13,16,11,10),(17,20,19,18,21,24,23,22),(25,32,27,30,29,28,31,26),(33,40,35,38,37,36,39,34),(41,44,43,42,45,48,47,46),(49,52,51,50,53,56,55,54)]])

C7xC4.D4 is a maximal subgroup of   C23.3D28  C23.4D28  M4(2).19D14  D28.1D4  D28:1D4  D28.2D4  D28.3D4

77 conjugacy classes

class 1 2A2B2C2D4A4B7A···7F8A8B8C8D14A···14F14G···14L14M···14X28A···28L56A···56X
order12222447···7888814···1414···1414···1428···2856···56
size11244221···144441···12···24···42···24···4

77 irreducible representations

dim111111112244
type+++++
imageC1C2C2C4C7C14C14C28D4C7xD4C4.D4C7xC4.D4
kernelC7xC4.D4C7xM4(2)D4xC14C22xC14C4.D4M4(2)C2xD4C23C28C4C7C1
# reps121461262421216

Matrix representation of C7xC4.D4 in GL6(F113)

10600000
01060000
001000
000100
000010
000001
,
11200000
01120000
000100
00112000
000001
00001120
,
100000
1121120000
000001
000010
00112000
000100
,
120000
1121120000
000010
000001
000100
00112000

G:=sub<GL(6,GF(113))| [106,0,0,0,0,0,0,106,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,0,112,0,0,0,0,1,0,0,0,0,0,0,0,0,112,0,0,0,0,1,0],[1,112,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0],[1,112,0,0,0,0,2,112,0,0,0,0,0,0,0,0,0,112,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;

C7xC4.D4 in GAP, Magma, Sage, TeX

C_7\times C_4.D_4
% in TeX

G:=Group("C7xC4.D4");
// GroupNames label

G:=SmallGroup(224,49);
// by ID

G=gap.SmallGroup(224,49);
# by ID

G:=PCGroup([6,-2,-2,-7,-2,-2,-2,336,361,3363,2530,88]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=1,c^4=b^2,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

Export

Subgroup lattice of C7xC4.D4 in TeX

׿
x
:
Z
F
o
wr
Q
<