Extensions 1→N→G→Q→1 with N=D30.C2 and Q=C2

Direct product G=N×Q with N=D30.C2 and Q=C2
dρLabelID
C2×D30.C2120C2xD30.C2240,144

Semidirect products G=N:Q with N=D30.C2 and Q=C2
extensionφ:Q→Out NdρLabelID
D30.C21C2 = D60⋊C2φ: C2/C1C2 ⊆ Out D30.C21204+D30.C2:1C2240,130
D30.C22C2 = C12.28D10φ: C2/C1C2 ⊆ Out D30.C21204+D30.C2:2C2240,134
D30.C23C2 = Dic5.D6φ: C2/C1C2 ⊆ Out D30.C21204D30.C2:3C2240,140
D30.C24C2 = Dic3.D10φ: C2/C1C2 ⊆ Out D30.C21204D30.C2:4C2240,143
D30.C25C2 = D10⋊D6φ: C2/C1C2 ⊆ Out D30.C2604+D30.C2:5C2240,151
D30.C26C2 = C4×S3×D5φ: trivial image604D30.C2:6C2240,135

Non-split extensions G=N.Q with N=D30.C2 and Q=C2
extensionφ:Q→Out NdρLabelID
D30.C2.1C2 = D15⋊Q8φ: C2/C1C2 ⊆ Out D30.C21204D30.C2.1C2240,131
D30.C2.2C2 = D15⋊C8φ: C2/C1C2 ⊆ Out D30.C21208+D30.C2.2C2240,99
D30.C2.3C2 = Dic3.F5φ: C2/C1C2 ⊆ Out D30.C21208+D30.C2.3C2240,101

׿
×
𝔽