Copied to
clipboard

G = D10:D6order 240 = 24·3·5

4th semidirect product of D10 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D10:4D6, D15:2D4, D6:4D10, Dic5:2D6, Dic3:2D10, D30:10C22, C30.27C23, C5:3(S3xD4), C3:3(D4xD5), C15:9(C2xD4), (C2xC10):5D6, (C2xC6):2D10, C5:D4:2S3, C3:D4:2D5, C3:D20:6C2, C5:D12:6C2, C22:4(S3xD5), D30.C2:5C2, (C2xC30):4C22, (C6xD5):4C22, (S3xC10):4C22, (C22xD15):6C2, C6.27(C22xD5), C10.27(C22xS3), (C5xDic3):2C22, (C3xDic5):2C22, (C2xS3xD5):6C2, C2.27(C2xS3xD5), (C3xC5:D4):4C2, (C5xC3:D4):4C2, SmallGroup(240,151)

Series: Derived Chief Lower central Upper central

C1C30 — D10:D6
C1C5C15C30C6xD5C2xS3xD5 — D10:D6
C15C30 — D10:D6
C1C2C22

Generators and relations for D10:D6
 G = < a,b,c,d | a10=b2=c6=d2=1, bab=dad=a-1, ac=ca, cbc-1=a5b, dbd=a3b, dcd=c-1 >

Subgroups: 600 in 108 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2xC4, D4, C23, D5, C10, C10, Dic3, C12, D6, D6, C2xC6, C2xC6, C15, C2xD4, Dic5, C20, D10, D10, C2xC10, C2xC10, C4xS3, D12, C3:D4, C3:D4, C3xD4, C22xS3, C5xS3, C3xD5, D15, D15, C30, C30, C4xD5, D20, C5:D4, C5:D4, C5xD4, C22xD5, S3xD4, C5xDic3, C3xDic5, S3xD5, C6xD5, S3xC10, D30, D30, C2xC30, D4xD5, D30.C2, C3:D20, C5:D12, C3xC5:D4, C5xC3:D4, C2xS3xD5, C22xD15, D10:D6
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2xD4, D10, C22xS3, C22xD5, S3xD4, S3xD5, D4xD5, C2xS3xD5, D10:D6

Smallest permutation representation of D10:D6
On 60 points
Generators in S60
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 15)(12 14)(16 20)(17 19)(21 26)(22 25)(23 24)(27 30)(28 29)(31 38)(32 37)(33 36)(34 35)(39 40)(41 43)(44 50)(45 49)(46 48)(51 59)(52 58)(53 57)(54 56)
(1 50 35 53 29 11)(2 41 36 54 30 12)(3 42 37 55 21 13)(4 43 38 56 22 14)(5 44 39 57 23 15)(6 45 40 58 24 16)(7 46 31 59 25 17)(8 47 32 60 26 18)(9 48 33 51 27 19)(10 49 34 52 28 20)
(1 11)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 48)(22 47)(23 46)(24 45)(25 44)(26 43)(27 42)(28 41)(29 50)(30 49)(31 57)(32 56)(33 55)(34 54)(35 53)(36 52)(37 51)(38 60)(39 59)(40 58)

G:=sub<Sym(60)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,10)(2,9)(3,8)(4,7)(5,6)(11,15)(12,14)(16,20)(17,19)(21,26)(22,25)(23,24)(27,30)(28,29)(31,38)(32,37)(33,36)(34,35)(39,40)(41,43)(44,50)(45,49)(46,48)(51,59)(52,58)(53,57)(54,56), (1,50,35,53,29,11)(2,41,36,54,30,12)(3,42,37,55,21,13)(4,43,38,56,22,14)(5,44,39,57,23,15)(6,45,40,58,24,16)(7,46,31,59,25,17)(8,47,32,60,26,18)(9,48,33,51,27,19)(10,49,34,52,28,20), (1,11)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,48)(22,47)(23,46)(24,45)(25,44)(26,43)(27,42)(28,41)(29,50)(30,49)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,60)(39,59)(40,58)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,10)(2,9)(3,8)(4,7)(5,6)(11,15)(12,14)(16,20)(17,19)(21,26)(22,25)(23,24)(27,30)(28,29)(31,38)(32,37)(33,36)(34,35)(39,40)(41,43)(44,50)(45,49)(46,48)(51,59)(52,58)(53,57)(54,56), (1,50,35,53,29,11)(2,41,36,54,30,12)(3,42,37,55,21,13)(4,43,38,56,22,14)(5,44,39,57,23,15)(6,45,40,58,24,16)(7,46,31,59,25,17)(8,47,32,60,26,18)(9,48,33,51,27,19)(10,49,34,52,28,20), (1,11)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,48)(22,47)(23,46)(24,45)(25,44)(26,43)(27,42)(28,41)(29,50)(30,49)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,60)(39,59)(40,58) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,15),(12,14),(16,20),(17,19),(21,26),(22,25),(23,24),(27,30),(28,29),(31,38),(32,37),(33,36),(34,35),(39,40),(41,43),(44,50),(45,49),(46,48),(51,59),(52,58),(53,57),(54,56)], [(1,50,35,53,29,11),(2,41,36,54,30,12),(3,42,37,55,21,13),(4,43,38,56,22,14),(5,44,39,57,23,15),(6,45,40,58,24,16),(7,46,31,59,25,17),(8,47,32,60,26,18),(9,48,33,51,27,19),(10,49,34,52,28,20)], [(1,11),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,48),(22,47),(23,46),(24,45),(25,44),(26,43),(27,42),(28,41),(29,50),(30,49),(31,57),(32,56),(33,55),(34,54),(35,53),(36,52),(37,51),(38,60),(39,59),(40,58)]])

D10:D6 is a maximal subgroup of
D20:24D6  D20:29D6  S3xD4xD5  D30.C23  D20:14D6  D12:14D10  C15:2+ 1+4
D10:D6 is a maximal quotient of
Dic3:Dic10  D30.34D4  D30.35D4  D30:8Q8  Dic15:13D4  D30.Q8  Dic15:14D4  D30:D4  D10:4Dic6  D6:3Dic10  D30.6D4  D30:2D4  D30:12D4  Dic15.10D4  D30.27D4  D30:5D4  D15:D8  D30.8D4  Dic10:D6  D30.9D4  D20.10D6  Dic6:D10  D30.11D4  D12:5D10  D15:SD16  D60:C22  D15:Q16  C60.C23  D20.16D6  D20.17D6  D12.D10  D30.44D4  Dic15.19D4  D30:6D4  Dic15:3D4  D30:7D4  Dic15:4D4  Dic15:16D4  Dic15:17D4  D30.45D4  D30.16D4  Dic15:5D4  Dic15:18D4  D30:18D4  D30:19D4  Dic15.48D4  D30:8D4

33 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B5A5B6A6B6C10A10B10C10D10E10F 12 15A15B20A20B30A···30F
order1222222234455666101010101010121515202030···30
size112610151530261022242022441212204412124···4

33 irreducible representations

dim1111111122222222244444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D5D6D6D6D10D10D10S3xD4S3xD5D4xD5C2xS3xD5D10:D6
kernelD10:D6D30.C2C3:D20C5:D12C3xC5:D4C5xC3:D4C2xS3xD5C22xD15C5:D4D15C3:D4Dic5D10C2xC10Dic3D6C2xC6C5C22C3C2C1
# reps1111111112211122212224

Matrix representation of D10:D6 in GL6(F61)

17180000
4400000
0060000
0006000
000010
000001
,
4410000
17170000
0060000
006100
000010
000001
,
6000000
0600000
00602000
000100
00006020
000092
,
44430000
16170000
00602000
000100
00005920
000092

G:=sub<GL(6,GF(61))| [17,44,0,0,0,0,18,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[44,17,0,0,0,0,1,17,0,0,0,0,0,0,60,6,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,20,1,0,0,0,0,0,0,60,9,0,0,0,0,20,2],[44,16,0,0,0,0,43,17,0,0,0,0,0,0,60,0,0,0,0,0,20,1,0,0,0,0,0,0,59,9,0,0,0,0,20,2] >;

D10:D6 in GAP, Magma, Sage, TeX

D_{10}\rtimes D_6
% in TeX

G:=Group("D10:D6");
// GroupNames label

G:=SmallGroup(240,151);
// by ID

G=gap.SmallGroup(240,151);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,218,116,490,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^6=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^5*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<