Copied to
clipboard

G = C12.28D10order 240 = 24·3·5

7th non-split extension by C12 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D609C2, Dic65D5, C20.18D6, D10.11D6, C12.28D10, C60.21C22, C30.10C23, Dic5.20D6, Dic3.4D10, D30.2C22, (C4×D5)⋊2S3, (D5×C12)⋊2C2, C157(C4○D4), C51(C4○D12), C3⋊D202C2, C4.14(S3×D5), D30.C22C2, (C5×Dic6)⋊3C2, C31(Q82D5), C6.10(C22×D5), C10.10(C22×S3), (C6×D5).12C22, (C5×Dic3).4C22, (C3×Dic5).14C22, C2.14(C2×S3×D5), SmallGroup(240,134)

Series: Derived Chief Lower central Upper central

C1C30 — C12.28D10
C1C5C15C30C6×D5C3⋊D20 — C12.28D10
C15C30 — C12.28D10
C1C2C4

Generators and relations for C12.28D10
 G = < a,b,c | a12=c2=1, b10=a6, bab-1=cac=a-1, cbc=a6b9 >

Subgroups: 384 in 80 conjugacy classes, 32 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C2×C4, D4, Q8, D5, C10, Dic3, C12, C12, D6, C2×C6, C15, C4○D4, Dic5, C20, C20, D10, D10, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×D5, D15, C30, C4×D5, C4×D5, D20, C5×Q8, C4○D12, C5×Dic3, C3×Dic5, C60, C6×D5, D30, Q82D5, D30.C2, C3⋊D20, D5×C12, C5×Dic6, D60, C12.28D10
Quotients: C1, C2, C22, S3, C23, D5, D6, C4○D4, D10, C22×S3, C22×D5, C4○D12, S3×D5, Q82D5, C2×S3×D5, C12.28D10

Smallest permutation representation of C12.28D10
On 120 points
Generators in S120
(1 28 99 105 44 63 11 38 89 115 54 73)(2 74 55 116 90 39 12 64 45 106 100 29)(3 30 81 107 46 65 13 40 91 117 56 75)(4 76 57 118 92 21 14 66 47 108 82 31)(5 32 83 109 48 67 15 22 93 119 58 77)(6 78 59 120 94 23 16 68 49 110 84 33)(7 34 85 111 50 69 17 24 95 101 60 79)(8 80 41 102 96 25 18 70 51 112 86 35)(9 36 87 113 52 71 19 26 97 103 42 61)(10 62 43 104 98 27 20 72 53 114 88 37)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 5)(2 4)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(21 64)(22 63)(23 62)(24 61)(25 80)(26 79)(27 78)(28 77)(29 76)(30 75)(31 74)(32 73)(33 72)(34 71)(35 70)(36 69)(37 68)(38 67)(39 66)(40 65)(41 96)(42 95)(43 94)(44 93)(45 92)(46 91)(47 90)(48 89)(49 88)(50 87)(51 86)(52 85)(53 84)(54 83)(55 82)(56 81)(57 100)(58 99)(59 98)(60 97)(101 103)(104 120)(105 119)(106 118)(107 117)(108 116)(109 115)(110 114)(111 113)

G:=sub<Sym(120)| (1,28,99,105,44,63,11,38,89,115,54,73)(2,74,55,116,90,39,12,64,45,106,100,29)(3,30,81,107,46,65,13,40,91,117,56,75)(4,76,57,118,92,21,14,66,47,108,82,31)(5,32,83,109,48,67,15,22,93,119,58,77)(6,78,59,120,94,23,16,68,49,110,84,33)(7,34,85,111,50,69,17,24,95,101,60,79)(8,80,41,102,96,25,18,70,51,112,86,35)(9,36,87,113,52,71,19,26,97,103,42,61)(10,62,43,104,98,27,20,72,53,114,88,37), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(21,64)(22,63)(23,62)(24,61)(25,80)(26,79)(27,78)(28,77)(29,76)(30,75)(31,74)(32,73)(33,72)(34,71)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65)(41,96)(42,95)(43,94)(44,93)(45,92)(46,91)(47,90)(48,89)(49,88)(50,87)(51,86)(52,85)(53,84)(54,83)(55,82)(56,81)(57,100)(58,99)(59,98)(60,97)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)>;

G:=Group( (1,28,99,105,44,63,11,38,89,115,54,73)(2,74,55,116,90,39,12,64,45,106,100,29)(3,30,81,107,46,65,13,40,91,117,56,75)(4,76,57,118,92,21,14,66,47,108,82,31)(5,32,83,109,48,67,15,22,93,119,58,77)(6,78,59,120,94,23,16,68,49,110,84,33)(7,34,85,111,50,69,17,24,95,101,60,79)(8,80,41,102,96,25,18,70,51,112,86,35)(9,36,87,113,52,71,19,26,97,103,42,61)(10,62,43,104,98,27,20,72,53,114,88,37), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(21,64)(22,63)(23,62)(24,61)(25,80)(26,79)(27,78)(28,77)(29,76)(30,75)(31,74)(32,73)(33,72)(34,71)(35,70)(36,69)(37,68)(38,67)(39,66)(40,65)(41,96)(42,95)(43,94)(44,93)(45,92)(46,91)(47,90)(48,89)(49,88)(50,87)(51,86)(52,85)(53,84)(54,83)(55,82)(56,81)(57,100)(58,99)(59,98)(60,97)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113) );

G=PermutationGroup([[(1,28,99,105,44,63,11,38,89,115,54,73),(2,74,55,116,90,39,12,64,45,106,100,29),(3,30,81,107,46,65,13,40,91,117,56,75),(4,76,57,118,92,21,14,66,47,108,82,31),(5,32,83,109,48,67,15,22,93,119,58,77),(6,78,59,120,94,23,16,68,49,110,84,33),(7,34,85,111,50,69,17,24,95,101,60,79),(8,80,41,102,96,25,18,70,51,112,86,35),(9,36,87,113,52,71,19,26,97,103,42,61),(10,62,43,104,98,27,20,72,53,114,88,37)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,5),(2,4),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(21,64),(22,63),(23,62),(24,61),(25,80),(26,79),(27,78),(28,77),(29,76),(30,75),(31,74),(32,73),(33,72),(34,71),(35,70),(36,69),(37,68),(38,67),(39,66),(40,65),(41,96),(42,95),(43,94),(44,93),(45,92),(46,91),(47,90),(48,89),(49,88),(50,87),(51,86),(52,85),(53,84),(54,83),(55,82),(56,81),(57,100),(58,99),(59,98),(60,97),(101,103),(104,120),(105,119),(106,118),(107,117),(108,116),(109,115),(110,114),(111,113)]])

C12.28D10 is a maximal subgroup of
D602C4  D605C4  C24⋊D10  C24.2D10  C40.31D6  D120⋊C2  D20.9D6  C60.16C23  C60.39C23  D20.D6  D60.C4  Dic6.F5  D20.38D6  D5×C4○D12  D2029D6  D30.C23  D2014D6  C30.33C24  S3×Q82D5
C12.28D10 is a maximal quotient of
Dic5×Dic6  C4⋊Dic3⋊D5  Dic3.Dic10  Dic3⋊C4⋊D5  D30.D4  (C4×D5)⋊Dic3  C60.67D4  (C2×C60).C22  C60.70D4  (C4×Dic5)⋊S3  C20.Dic6  D30.C2⋊C4  D6017C4  D303Q8  D30.6D4  C1520(C4×D4)  C127D20  (C2×Dic6)⋊D5  D302D4

36 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E5A5B6A6B6C10A10B12A12B12C12D15A15B20A20B20C20D20E20F30A30B60A60B60C60D
order12222344444556661010121212121515202020202020303060606060
size11103030225566222101022221010444412121212444444

36 irreducible representations

dim1111112222222224444
type+++++++++++++++++
imageC1C2C2C2C2C2S3D5D6D6D6C4○D4D10D10C4○D12S3×D5Q82D5C2×S3×D5C12.28D10
kernelC12.28D10D30.C2C3⋊D20D5×C12C5×Dic6D60C4×D5Dic6Dic5C20D10C15Dic3C12C5C4C3C2C1
# reps1221111211124242224

Matrix representation of C12.28D10 in GL6(𝔽61)

60150000
1220000
001000
000100
0000603
0000401
,
100000
49600000
00444400
00176000
00005033
0000011
,
100000
49600000
00444400
00601700
000010
00002160

G:=sub<GL(6,GF(61))| [60,12,0,0,0,0,15,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,40,0,0,0,0,3,1],[1,49,0,0,0,0,0,60,0,0,0,0,0,0,44,17,0,0,0,0,44,60,0,0,0,0,0,0,50,0,0,0,0,0,33,11],[1,49,0,0,0,0,0,60,0,0,0,0,0,0,44,60,0,0,0,0,44,17,0,0,0,0,0,0,1,21,0,0,0,0,0,60] >;

C12.28D10 in GAP, Magma, Sage, TeX

C_{12}._{28}D_{10}
% in TeX

G:=Group("C12.28D10");
// GroupNames label

G:=SmallGroup(240,134);
// by ID

G=gap.SmallGroup(240,134);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,121,55,116,50,490,6917]);
// Polycyclic

G:=Group<a,b,c|a^12=c^2=1,b^10=a^6,b*a*b^-1=c*a*c=a^-1,c*b*c=a^6*b^9>;
// generators/relations

׿
×
𝔽