Extensions 1→N→G→Q→1 with N=C10 and Q=C2xC12

Direct product G=NxQ with N=C10 and Q=C2xC12
dρLabelID
C22xC60240C2^2xC60240,185

Semidirect products G=N:Q with N=C10 and Q=C2xC12
extensionφ:Q→Aut NdρLabelID
C10:(C2xC12) = C2xC6xF5φ: C2xC12/C6C4 ⊆ Aut C1060C10:(C2xC12)240,200
C10:2(C2xC12) = D5xC2xC12φ: C2xC12/C12C2 ⊆ Aut C10120C10:2(C2xC12)240,156
C10:3(C2xC12) = C2xC6xDic5φ: C2xC12/C2xC6C2 ⊆ Aut C10240C10:3(C2xC12)240,163

Non-split extensions G=N.Q with N=C10 and Q=C2xC12
extensionφ:Q→Aut NdρLabelID
C10.1(C2xC12) = C3xD5:C8φ: C2xC12/C6C4 ⊆ Aut C101204C10.1(C2xC12)240,111
C10.2(C2xC12) = C3xC4.F5φ: C2xC12/C6C4 ⊆ Aut C101204C10.2(C2xC12)240,112
C10.3(C2xC12) = C12xF5φ: C2xC12/C6C4 ⊆ Aut C10604C10.3(C2xC12)240,113
C10.4(C2xC12) = C3xC4:F5φ: C2xC12/C6C4 ⊆ Aut C10604C10.4(C2xC12)240,114
C10.5(C2xC12) = C6xC5:C8φ: C2xC12/C6C4 ⊆ Aut C10240C10.5(C2xC12)240,115
C10.6(C2xC12) = C3xC22.F5φ: C2xC12/C6C4 ⊆ Aut C101204C10.6(C2xC12)240,116
C10.7(C2xC12) = C3xC22:F5φ: C2xC12/C6C4 ⊆ Aut C10604C10.7(C2xC12)240,117
C10.8(C2xC12) = D5xC24φ: C2xC12/C12C2 ⊆ Aut C101202C10.8(C2xC12)240,33
C10.9(C2xC12) = C3xC8:D5φ: C2xC12/C12C2 ⊆ Aut C101202C10.9(C2xC12)240,34
C10.10(C2xC12) = C3xC10.D4φ: C2xC12/C12C2 ⊆ Aut C10240C10.10(C2xC12)240,41
C10.11(C2xC12) = C3xD10:C4φ: C2xC12/C12C2 ⊆ Aut C10120C10.11(C2xC12)240,43
C10.12(C2xC12) = C6xC5:2C8φ: C2xC12/C2xC6C2 ⊆ Aut C10240C10.12(C2xC12)240,38
C10.13(C2xC12) = C3xC4.Dic5φ: C2xC12/C2xC6C2 ⊆ Aut C101202C10.13(C2xC12)240,39
C10.14(C2xC12) = C12xDic5φ: C2xC12/C2xC6C2 ⊆ Aut C10240C10.14(C2xC12)240,40
C10.15(C2xC12) = C3xC4:Dic5φ: C2xC12/C2xC6C2 ⊆ Aut C10240C10.15(C2xC12)240,42
C10.16(C2xC12) = C3xC23.D5φ: C2xC12/C2xC6C2 ⊆ Aut C10120C10.16(C2xC12)240,48
C10.17(C2xC12) = C15xC22:C4central extension (φ=1)120C10.17(C2xC12)240,82
C10.18(C2xC12) = C15xC4:C4central extension (φ=1)240C10.18(C2xC12)240,83
C10.19(C2xC12) = C15xM4(2)central extension (φ=1)1202C10.19(C2xC12)240,85

׿
x
:
Z
F
o
wr
Q
<