extension | φ:Q→Aut N | d | ρ | Label | ID |
C10.1(C2xC12) = C3xD5:C8 | φ: C2xC12/C6 → C4 ⊆ Aut C10 | 120 | 4 | C10.1(C2xC12) | 240,111 |
C10.2(C2xC12) = C3xC4.F5 | φ: C2xC12/C6 → C4 ⊆ Aut C10 | 120 | 4 | C10.2(C2xC12) | 240,112 |
C10.3(C2xC12) = C12xF5 | φ: C2xC12/C6 → C4 ⊆ Aut C10 | 60 | 4 | C10.3(C2xC12) | 240,113 |
C10.4(C2xC12) = C3xC4:F5 | φ: C2xC12/C6 → C4 ⊆ Aut C10 | 60 | 4 | C10.4(C2xC12) | 240,114 |
C10.5(C2xC12) = C6xC5:C8 | φ: C2xC12/C6 → C4 ⊆ Aut C10 | 240 | | C10.5(C2xC12) | 240,115 |
C10.6(C2xC12) = C3xC22.F5 | φ: C2xC12/C6 → C4 ⊆ Aut C10 | 120 | 4 | C10.6(C2xC12) | 240,116 |
C10.7(C2xC12) = C3xC22:F5 | φ: C2xC12/C6 → C4 ⊆ Aut C10 | 60 | 4 | C10.7(C2xC12) | 240,117 |
C10.8(C2xC12) = D5xC24 | φ: C2xC12/C12 → C2 ⊆ Aut C10 | 120 | 2 | C10.8(C2xC12) | 240,33 |
C10.9(C2xC12) = C3xC8:D5 | φ: C2xC12/C12 → C2 ⊆ Aut C10 | 120 | 2 | C10.9(C2xC12) | 240,34 |
C10.10(C2xC12) = C3xC10.D4 | φ: C2xC12/C12 → C2 ⊆ Aut C10 | 240 | | C10.10(C2xC12) | 240,41 |
C10.11(C2xC12) = C3xD10:C4 | φ: C2xC12/C12 → C2 ⊆ Aut C10 | 120 | | C10.11(C2xC12) | 240,43 |
C10.12(C2xC12) = C6xC5:2C8 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C10 | 240 | | C10.12(C2xC12) | 240,38 |
C10.13(C2xC12) = C3xC4.Dic5 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C10 | 120 | 2 | C10.13(C2xC12) | 240,39 |
C10.14(C2xC12) = C12xDic5 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C10 | 240 | | C10.14(C2xC12) | 240,40 |
C10.15(C2xC12) = C3xC4:Dic5 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C10 | 240 | | C10.15(C2xC12) | 240,42 |
C10.16(C2xC12) = C3xC23.D5 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C10 | 120 | | C10.16(C2xC12) | 240,48 |
C10.17(C2xC12) = C15xC22:C4 | central extension (φ=1) | 120 | | C10.17(C2xC12) | 240,82 |
C10.18(C2xC12) = C15xC4:C4 | central extension (φ=1) | 240 | | C10.18(C2xC12) | 240,83 |
C10.19(C2xC12) = C15xM4(2) | central extension (φ=1) | 120 | 2 | C10.19(C2xC12) | 240,85 |