Copied to
clipboard

G = C3×D5⋊C8order 240 = 24·3·5

Direct product of C3 and D5⋊C8

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C3×D5⋊C8, D5⋊C24, C60.6C4, C12.6F5, C20.3C12, D10.2C12, C5⋊C83C6, C154(C2×C8), C51(C2×C24), (C3×D5)⋊3C8, C4.3(C3×F5), C2.1(C6×F5), (C4×D5).5C6, (C6×D5).6C4, C6.15(C2×F5), C30.15(C2×C4), C10.1(C2×C12), (D5×C12).12C2, Dic5.5(C2×C6), (C3×Dic5).25C22, (C3×C5⋊C8)⋊7C2, SmallGroup(240,111)

Series: Derived Chief Lower central Upper central

C1C5 — C3×D5⋊C8
C1C5C10Dic5C3×Dic5C3×C5⋊C8 — C3×D5⋊C8
C5 — C3×D5⋊C8
C1C12

Generators and relations for C3×D5⋊C8
 G = < a,b,c,d | a3=b5=c2=d8=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b3, dcd-1=b2c >

5C2
5C2
5C4
5C22
5C6
5C6
5C2×C4
5C8
5C8
5C2×C6
5C12
5C2×C8
5C2×C12
5C24
5C24
5C2×C24

Smallest permutation representation of C3×D5⋊C8
On 120 points
Generators in S120
(1 100 60)(2 101 61)(3 102 62)(4 103 63)(5 104 64)(6 97 57)(7 98 58)(8 99 59)(9 86 46)(10 87 47)(11 88 48)(12 81 41)(13 82 42)(14 83 43)(15 84 44)(16 85 45)(17 95 120)(18 96 113)(19 89 114)(20 90 115)(21 91 116)(22 92 117)(23 93 118)(24 94 119)(25 110 66)(26 111 67)(27 112 68)(28 105 69)(29 106 70)(30 107 71)(31 108 72)(32 109 65)(33 56 74)(34 49 75)(35 50 76)(36 51 77)(37 52 78)(38 53 79)(39 54 80)(40 55 73)
(1 105 22 46 49)(2 47 106 50 23)(3 51 48 24 107)(4 17 52 108 41)(5 109 18 42 53)(6 43 110 54 19)(7 55 44 20 111)(8 21 56 112 45)(9 75 100 69 92)(10 70 76 93 101)(11 94 71 102 77)(12 103 95 78 72)(13 79 104 65 96)(14 66 80 89 97)(15 90 67 98 73)(16 99 91 74 68)(25 39 114 57 83)(26 58 40 84 115)(27 85 59 116 33)(28 117 86 34 60)(29 35 118 61 87)(30 62 36 88 119)(31 81 63 120 37)(32 113 82 38 64)
(1 49)(2 23)(3 107)(4 41)(5 53)(6 19)(7 111)(8 45)(9 69)(10 76)(12 103)(13 65)(14 80)(16 99)(17 108)(20 55)(21 112)(24 51)(26 58)(27 116)(28 86)(30 62)(31 120)(32 82)(34 60)(35 87)(36 119)(38 64)(39 83)(40 115)(42 109)(43 54)(46 105)(47 50)(57 114)(59 85)(61 118)(63 81)(67 98)(68 91)(71 102)(72 95)(73 90)(75 100)(77 94)(79 104)(89 97)(93 101)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,46)(10,87,47)(11,88,48)(12,81,41)(13,82,42)(14,83,43)(15,84,44)(16,85,45)(17,95,120)(18,96,113)(19,89,114)(20,90,115)(21,91,116)(22,92,117)(23,93,118)(24,94,119)(25,110,66)(26,111,67)(27,112,68)(28,105,69)(29,106,70)(30,107,71)(31,108,72)(32,109,65)(33,56,74)(34,49,75)(35,50,76)(36,51,77)(37,52,78)(38,53,79)(39,54,80)(40,55,73), (1,105,22,46,49)(2,47,106,50,23)(3,51,48,24,107)(4,17,52,108,41)(5,109,18,42,53)(6,43,110,54,19)(7,55,44,20,111)(8,21,56,112,45)(9,75,100,69,92)(10,70,76,93,101)(11,94,71,102,77)(12,103,95,78,72)(13,79,104,65,96)(14,66,80,89,97)(15,90,67,98,73)(16,99,91,74,68)(25,39,114,57,83)(26,58,40,84,115)(27,85,59,116,33)(28,117,86,34,60)(29,35,118,61,87)(30,62,36,88,119)(31,81,63,120,37)(32,113,82,38,64), (1,49)(2,23)(3,107)(4,41)(5,53)(6,19)(7,111)(8,45)(9,69)(10,76)(12,103)(13,65)(14,80)(16,99)(17,108)(20,55)(21,112)(24,51)(26,58)(27,116)(28,86)(30,62)(31,120)(32,82)(34,60)(35,87)(36,119)(38,64)(39,83)(40,115)(42,109)(43,54)(46,105)(47,50)(57,114)(59,85)(61,118)(63,81)(67,98)(68,91)(71,102)(72,95)(73,90)(75,100)(77,94)(79,104)(89,97)(93,101), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,46)(10,87,47)(11,88,48)(12,81,41)(13,82,42)(14,83,43)(15,84,44)(16,85,45)(17,95,120)(18,96,113)(19,89,114)(20,90,115)(21,91,116)(22,92,117)(23,93,118)(24,94,119)(25,110,66)(26,111,67)(27,112,68)(28,105,69)(29,106,70)(30,107,71)(31,108,72)(32,109,65)(33,56,74)(34,49,75)(35,50,76)(36,51,77)(37,52,78)(38,53,79)(39,54,80)(40,55,73), (1,105,22,46,49)(2,47,106,50,23)(3,51,48,24,107)(4,17,52,108,41)(5,109,18,42,53)(6,43,110,54,19)(7,55,44,20,111)(8,21,56,112,45)(9,75,100,69,92)(10,70,76,93,101)(11,94,71,102,77)(12,103,95,78,72)(13,79,104,65,96)(14,66,80,89,97)(15,90,67,98,73)(16,99,91,74,68)(25,39,114,57,83)(26,58,40,84,115)(27,85,59,116,33)(28,117,86,34,60)(29,35,118,61,87)(30,62,36,88,119)(31,81,63,120,37)(32,113,82,38,64), (1,49)(2,23)(3,107)(4,41)(5,53)(6,19)(7,111)(8,45)(9,69)(10,76)(12,103)(13,65)(14,80)(16,99)(17,108)(20,55)(21,112)(24,51)(26,58)(27,116)(28,86)(30,62)(31,120)(32,82)(34,60)(35,87)(36,119)(38,64)(39,83)(40,115)(42,109)(43,54)(46,105)(47,50)(57,114)(59,85)(61,118)(63,81)(67,98)(68,91)(71,102)(72,95)(73,90)(75,100)(77,94)(79,104)(89,97)(93,101), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,100,60),(2,101,61),(3,102,62),(4,103,63),(5,104,64),(6,97,57),(7,98,58),(8,99,59),(9,86,46),(10,87,47),(11,88,48),(12,81,41),(13,82,42),(14,83,43),(15,84,44),(16,85,45),(17,95,120),(18,96,113),(19,89,114),(20,90,115),(21,91,116),(22,92,117),(23,93,118),(24,94,119),(25,110,66),(26,111,67),(27,112,68),(28,105,69),(29,106,70),(30,107,71),(31,108,72),(32,109,65),(33,56,74),(34,49,75),(35,50,76),(36,51,77),(37,52,78),(38,53,79),(39,54,80),(40,55,73)], [(1,105,22,46,49),(2,47,106,50,23),(3,51,48,24,107),(4,17,52,108,41),(5,109,18,42,53),(6,43,110,54,19),(7,55,44,20,111),(8,21,56,112,45),(9,75,100,69,92),(10,70,76,93,101),(11,94,71,102,77),(12,103,95,78,72),(13,79,104,65,96),(14,66,80,89,97),(15,90,67,98,73),(16,99,91,74,68),(25,39,114,57,83),(26,58,40,84,115),(27,85,59,116,33),(28,117,86,34,60),(29,35,118,61,87),(30,62,36,88,119),(31,81,63,120,37),(32,113,82,38,64)], [(1,49),(2,23),(3,107),(4,41),(5,53),(6,19),(7,111),(8,45),(9,69),(10,76),(12,103),(13,65),(14,80),(16,99),(17,108),(20,55),(21,112),(24,51),(26,58),(27,116),(28,86),(30,62),(31,120),(32,82),(34,60),(35,87),(36,119),(38,64),(39,83),(40,115),(42,109),(43,54),(46,105),(47,50),(57,114),(59,85),(61,118),(63,81),(67,98),(68,91),(71,102),(72,95),(73,90),(75,100),(77,94),(79,104),(89,97),(93,101)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

C3×D5⋊C8 is a maximal subgroup of
C30.C42  C30.4C42  D12⋊F5  Dic30⋊C4  F5×C24  D12.2F5  D60.C4  C5⋊C8⋊D6
C3×D5⋊C8 is a maximal quotient of
C12×C5⋊C8

60 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D 5 6A6B6C6D6E6F8A···8H 10 12A12B12C12D12E12F12G12H15A15B20A20B24A···24P30A30B60A60B60C60D
order122233444456666668···81012121212121212121515202024···24303060606060
size115511115541155555···541111555544445···5444444

60 irreducible representations

dim111111111111444444
type+++++
imageC1C2C2C3C4C4C6C6C8C12C12C24F5C2×F5C3×F5D5⋊C8C6×F5C3×D5⋊C8
kernelC3×D5⋊C8C3×C5⋊C8D5×C12D5⋊C8C60C6×D5C5⋊C8C4×D5C3×D5C20D10D5C12C6C4C3C2C1
# reps1212224284416112224

Matrix representation of C3×D5⋊C8 in GL4(𝔽241) generated by

15000
01500
00150
00015
,
240100
240010
240001
240000
,
240000
240001
240010
240100
,
17962380
217620179
179062217
03862179
G:=sub<GL(4,GF(241))| [15,0,0,0,0,15,0,0,0,0,15,0,0,0,0,15],[240,240,240,240,1,0,0,0,0,1,0,0,0,0,1,0],[240,240,240,240,0,0,0,1,0,0,1,0,0,1,0,0],[179,217,179,0,62,62,0,38,38,0,62,62,0,179,217,179] >;

C3×D5⋊C8 in GAP, Magma, Sage, TeX

C_3\times D_5\rtimes C_8
% in TeX

G:=Group("C3xD5:C8");
// GroupNames label

G:=SmallGroup(240,111);
// by ID

G=gap.SmallGroup(240,111);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-5,72,151,69,3461,599]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^5=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^3,d*c*d^-1=b^2*c>;
// generators/relations

Export

Subgroup lattice of C3×D5⋊C8 in TeX

׿
×
𝔽