Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=D5

Direct product G=N×Q with N=C3×Q8 and Q=D5
dρLabelID
C3×Q8×D51204C3xQ8xD5240,161

Semidirect products G=N:Q with N=C3×Q8 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊1D5 = Q82D15φ: D5/C5C2 ⊆ Out C3×Q81204+(C3xQ8):1D5240,78
(C3×Q8)⋊2D5 = Q8×D15φ: D5/C5C2 ⊆ Out C3×Q81204-(C3xQ8):2D5240,181
(C3×Q8)⋊3D5 = Q83D15φ: D5/C5C2 ⊆ Out C3×Q81204+(C3xQ8):3D5240,182
(C3×Q8)⋊4D5 = C3×Q8⋊D5φ: D5/C5C2 ⊆ Out C3×Q81204(C3xQ8):4D5240,46
(C3×Q8)⋊5D5 = C3×Q82D5φ: trivial image1204(C3xQ8):5D5240,162

Non-split extensions G=N.Q with N=C3×Q8 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×Q8).1D5 = C157Q16φ: D5/C5C2 ⊆ Out C3×Q82404-(C3xQ8).1D5240,79
(C3×Q8).2D5 = C3×C5⋊Q16φ: D5/C5C2 ⊆ Out C3×Q82404(C3xQ8).2D5240,47

׿
×
𝔽