direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Q8×D15, C4.6D30, C20.20D6, Dic30⋊4C2, C12.20D10, C60.6C22, C30.34C23, D30.16C22, Dic15.9C22, C5⋊3(S3×Q8), C3⋊3(Q8×D5), C15⋊8(C2×Q8), (C3×Q8)⋊2D5, (C5×Q8)⋊4S3, (Q8×C15)⋊2C2, (C4×D15).1C2, C6.34(C22×D5), C2.8(C22×D15), C10.34(C22×S3), SmallGroup(240,181)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8×D15
G = < a,b,c,d | a4=c15=d2=1, b2=a2, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 336 in 76 conjugacy classes, 37 normal (14 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C2×C4, Q8, Q8, D5, C10, Dic3, C12, D6, C15, C2×Q8, Dic5, C20, D10, Dic6, C4×S3, C3×Q8, D15, C30, Dic10, C4×D5, C5×Q8, S3×Q8, Dic15, C60, D30, Q8×D5, Dic30, C4×D15, Q8×C15, Q8×D15
Quotients: C1, C2, C22, S3, Q8, C23, D5, D6, C2×Q8, D10, C22×S3, D15, C22×D5, S3×Q8, D30, Q8×D5, C22×D15, Q8×D15
(1 50 17 43)(2 51 18 44)(3 52 19 45)(4 53 20 31)(5 54 21 32)(6 55 22 33)(7 56 23 34)(8 57 24 35)(9 58 25 36)(10 59 26 37)(11 60 27 38)(12 46 28 39)(13 47 29 40)(14 48 30 41)(15 49 16 42)(61 95 87 110)(62 96 88 111)(63 97 89 112)(64 98 90 113)(65 99 76 114)(66 100 77 115)(67 101 78 116)(68 102 79 117)(69 103 80 118)(70 104 81 119)(71 105 82 120)(72 91 83 106)(73 92 84 107)(74 93 85 108)(75 94 86 109)
(1 84 17 73)(2 85 18 74)(3 86 19 75)(4 87 20 61)(5 88 21 62)(6 89 22 63)(7 90 23 64)(8 76 24 65)(9 77 25 66)(10 78 26 67)(11 79 27 68)(12 80 28 69)(13 81 29 70)(14 82 30 71)(15 83 16 72)(31 110 53 95)(32 111 54 96)(33 112 55 97)(34 113 56 98)(35 114 57 99)(36 115 58 100)(37 116 59 101)(38 117 60 102)(39 118 46 103)(40 119 47 104)(41 120 48 105)(42 106 49 91)(43 107 50 92)(44 108 51 93)(45 109 52 94)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 16)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 24)(9 23)(10 22)(11 21)(12 20)(13 19)(14 18)(15 17)(31 46)(32 60)(33 59)(34 58)(35 57)(36 56)(37 55)(38 54)(39 53)(40 52)(41 51)(42 50)(43 49)(44 48)(45 47)(61 80)(62 79)(63 78)(64 77)(65 76)(66 90)(67 89)(68 88)(69 87)(70 86)(71 85)(72 84)(73 83)(74 82)(75 81)(91 107)(92 106)(93 120)(94 119)(95 118)(96 117)(97 116)(98 115)(99 114)(100 113)(101 112)(102 111)(103 110)(104 109)(105 108)
G:=sub<Sym(120)| (1,50,17,43)(2,51,18,44)(3,52,19,45)(4,53,20,31)(5,54,21,32)(6,55,22,33)(7,56,23,34)(8,57,24,35)(9,58,25,36)(10,59,26,37)(11,60,27,38)(12,46,28,39)(13,47,29,40)(14,48,30,41)(15,49,16,42)(61,95,87,110)(62,96,88,111)(63,97,89,112)(64,98,90,113)(65,99,76,114)(66,100,77,115)(67,101,78,116)(68,102,79,117)(69,103,80,118)(70,104,81,119)(71,105,82,120)(72,91,83,106)(73,92,84,107)(74,93,85,108)(75,94,86,109), (1,84,17,73)(2,85,18,74)(3,86,19,75)(4,87,20,61)(5,88,21,62)(6,89,22,63)(7,90,23,64)(8,76,24,65)(9,77,25,66)(10,78,26,67)(11,79,27,68)(12,80,28,69)(13,81,29,70)(14,82,30,71)(15,83,16,72)(31,110,53,95)(32,111,54,96)(33,112,55,97)(34,113,56,98)(35,114,57,99)(36,115,58,100)(37,116,59,101)(38,117,60,102)(39,118,46,103)(40,119,47,104)(41,120,48,105)(42,106,49,91)(43,107,50,92)(44,108,51,93)(45,109,52,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,16)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(31,46)(32,60)(33,59)(34,58)(35,57)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(61,80)(62,79)(63,78)(64,77)(65,76)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(91,107)(92,106)(93,120)(94,119)(95,118)(96,117)(97,116)(98,115)(99,114)(100,113)(101,112)(102,111)(103,110)(104,109)(105,108)>;
G:=Group( (1,50,17,43)(2,51,18,44)(3,52,19,45)(4,53,20,31)(5,54,21,32)(6,55,22,33)(7,56,23,34)(8,57,24,35)(9,58,25,36)(10,59,26,37)(11,60,27,38)(12,46,28,39)(13,47,29,40)(14,48,30,41)(15,49,16,42)(61,95,87,110)(62,96,88,111)(63,97,89,112)(64,98,90,113)(65,99,76,114)(66,100,77,115)(67,101,78,116)(68,102,79,117)(69,103,80,118)(70,104,81,119)(71,105,82,120)(72,91,83,106)(73,92,84,107)(74,93,85,108)(75,94,86,109), (1,84,17,73)(2,85,18,74)(3,86,19,75)(4,87,20,61)(5,88,21,62)(6,89,22,63)(7,90,23,64)(8,76,24,65)(9,77,25,66)(10,78,26,67)(11,79,27,68)(12,80,28,69)(13,81,29,70)(14,82,30,71)(15,83,16,72)(31,110,53,95)(32,111,54,96)(33,112,55,97)(34,113,56,98)(35,114,57,99)(36,115,58,100)(37,116,59,101)(38,117,60,102)(39,118,46,103)(40,119,47,104)(41,120,48,105)(42,106,49,91)(43,107,50,92)(44,108,51,93)(45,109,52,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,16)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(31,46)(32,60)(33,59)(34,58)(35,57)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(61,80)(62,79)(63,78)(64,77)(65,76)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(91,107)(92,106)(93,120)(94,119)(95,118)(96,117)(97,116)(98,115)(99,114)(100,113)(101,112)(102,111)(103,110)(104,109)(105,108) );
G=PermutationGroup([[(1,50,17,43),(2,51,18,44),(3,52,19,45),(4,53,20,31),(5,54,21,32),(6,55,22,33),(7,56,23,34),(8,57,24,35),(9,58,25,36),(10,59,26,37),(11,60,27,38),(12,46,28,39),(13,47,29,40),(14,48,30,41),(15,49,16,42),(61,95,87,110),(62,96,88,111),(63,97,89,112),(64,98,90,113),(65,99,76,114),(66,100,77,115),(67,101,78,116),(68,102,79,117),(69,103,80,118),(70,104,81,119),(71,105,82,120),(72,91,83,106),(73,92,84,107),(74,93,85,108),(75,94,86,109)], [(1,84,17,73),(2,85,18,74),(3,86,19,75),(4,87,20,61),(5,88,21,62),(6,89,22,63),(7,90,23,64),(8,76,24,65),(9,77,25,66),(10,78,26,67),(11,79,27,68),(12,80,28,69),(13,81,29,70),(14,82,30,71),(15,83,16,72),(31,110,53,95),(32,111,54,96),(33,112,55,97),(34,113,56,98),(35,114,57,99),(36,115,58,100),(37,116,59,101),(38,117,60,102),(39,118,46,103),(40,119,47,104),(41,120,48,105),(42,106,49,91),(43,107,50,92),(44,108,51,93),(45,109,52,94)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,16),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,24),(9,23),(10,22),(11,21),(12,20),(13,19),(14,18),(15,17),(31,46),(32,60),(33,59),(34,58),(35,57),(36,56),(37,55),(38,54),(39,53),(40,52),(41,51),(42,50),(43,49),(44,48),(45,47),(61,80),(62,79),(63,78),(64,77),(65,76),(66,90),(67,89),(68,88),(69,87),(70,86),(71,85),(72,84),(73,83),(74,82),(75,81),(91,107),(92,106),(93,120),(94,119),(95,118),(96,117),(97,116),(98,115),(99,114),(100,113),(101,112),(102,111),(103,110),(104,109),(105,108)]])
Q8×D15 is a maximal subgroup of
D15⋊SD16 D15⋊Q16 D20.17D6 D30.44D4 SD16⋊D15 Q16⋊D15 D20.29D6 D12.29D10 S3×Q8×D5 D20⋊16D6 Q8.15D30 D4.10D30
Q8×D15 is a maximal quotient of
Dic15⋊10Q8 C4⋊Dic30 Dic15.3Q8 D30⋊5Q8 D30⋊6Q8 Dic15⋊4Q8 D30⋊7Q8
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 6 | 10A | 10B | 12A | 12B | 12C | 15A | 15B | 15C | 15D | 20A | ··· | 20F | 30A | 30B | 30C | 30D | 60A | ··· | 60L |
order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 10 | 10 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | ··· | 20 | 30 | 30 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 15 | 15 | 2 | 2 | 2 | 2 | 30 | 30 | 30 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | - | + | + | + | + | + | - | - | - |
image | C1 | C2 | C2 | C2 | S3 | Q8 | D5 | D6 | D10 | D15 | D30 | S3×Q8 | Q8×D5 | Q8×D15 |
kernel | Q8×D15 | Dic30 | C4×D15 | Q8×C15 | C5×Q8 | D15 | C3×Q8 | C20 | C12 | Q8 | C4 | C5 | C3 | C1 |
# reps | 1 | 3 | 3 | 1 | 1 | 2 | 2 | 3 | 6 | 4 | 12 | 1 | 2 | 4 |
Matrix representation of Q8×D15 ►in GL6(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 59 |
0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 38 |
0 | 0 | 0 | 0 | 2 | 44 |
43 | 17 | 0 | 0 | 0 | 0 |
43 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 60 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 60 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,59,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,17,2,0,0,0,0,38,44],[43,43,0,0,0,0,17,0,0,0,0,0,0,0,0,60,0,0,0,0,1,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,60,60,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60] >;
Q8×D15 in GAP, Magma, Sage, TeX
Q_8\times D_{15}
% in TeX
G:=Group("Q8xD15");
// GroupNames label
G:=SmallGroup(240,181);
// by ID
G=gap.SmallGroup(240,181);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,55,116,50,964,6917]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^15=d^2=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations