Copied to
clipboard

G = Q8:3D15order 240 = 24·3·5

The semidirect product of Q8 and D15 acting through Inn(Q8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D60:4C2, Q8:3D15, C4.7D30, C20.21D6, C12.21D10, C60.7C22, C30.35C23, D30.7C22, Dic15.17C22, (C5xQ8):5S3, (C3xQ8):3D5, (C4xD15):3C2, (Q8xC15):3C2, C15:17(C4oD4), C5:3(Q8:3S3), C3:3(Q8:2D5), C6.35(C22xD5), C2.9(C22xD15), C10.35(C22xS3), SmallGroup(240,182)

Series: Derived Chief Lower central Upper central

C1C30 — Q8:3D15
C1C5C15C30D30C4xD15 — Q8:3D15
C15C30 — Q8:3D15
C1C2Q8

Generators and relations for Q8:3D15
 G = < a,b,c,d | a4=c15=d2=1, b2=a2, bab-1=dad=a-1, ac=ca, bc=cb, bd=db, dcd=c-1 >

Subgroups: 432 in 80 conjugacy classes, 35 normal (14 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C2xC4, D4, Q8, D5, C10, Dic3, C12, D6, C15, C4oD4, Dic5, C20, D10, C4xS3, D12, C3xQ8, D15, C30, C4xD5, D20, C5xQ8, Q8:3S3, Dic15, C60, D30, Q8:2D5, C4xD15, D60, Q8xC15, Q8:3D15
Quotients: C1, C2, C22, S3, C23, D5, D6, C4oD4, D10, C22xS3, D15, C22xD5, Q8:3S3, D30, Q8:2D5, C22xD15, Q8:3D15

Smallest permutation representation of Q8:3D15
On 120 points
Generators in S120
(1 58 28 39)(2 59 29 40)(3 60 30 41)(4 46 16 42)(5 47 17 43)(6 48 18 44)(7 49 19 45)(8 50 20 31)(9 51 21 32)(10 52 22 33)(11 53 23 34)(12 54 24 35)(13 55 25 36)(14 56 26 37)(15 57 27 38)(61 95 80 118)(62 96 81 119)(63 97 82 120)(64 98 83 106)(65 99 84 107)(66 100 85 108)(67 101 86 109)(68 102 87 110)(69 103 88 111)(70 104 89 112)(71 105 90 113)(72 91 76 114)(73 92 77 115)(74 93 78 116)(75 94 79 117)
(1 84 28 65)(2 85 29 66)(3 86 30 67)(4 87 16 68)(5 88 17 69)(6 89 18 70)(7 90 19 71)(8 76 20 72)(9 77 21 73)(10 78 22 74)(11 79 23 75)(12 80 24 61)(13 81 25 62)(14 82 26 63)(15 83 27 64)(31 114 50 91)(32 115 51 92)(33 116 52 93)(34 117 53 94)(35 118 54 95)(36 119 55 96)(37 120 56 97)(38 106 57 98)(39 107 58 99)(40 108 59 100)(41 109 60 101)(42 110 46 102)(43 111 47 103)(44 112 48 104)(45 113 49 105)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 38)(2 37)(3 36)(4 35)(5 34)(6 33)(7 32)(8 31)(9 45)(10 44)(11 43)(12 42)(13 41)(14 40)(15 39)(16 54)(17 53)(18 52)(19 51)(20 50)(21 49)(22 48)(23 47)(24 46)(25 60)(26 59)(27 58)(28 57)(29 56)(30 55)(61 102)(62 101)(63 100)(64 99)(65 98)(66 97)(67 96)(68 95)(69 94)(70 93)(71 92)(72 91)(73 105)(74 104)(75 103)(76 114)(77 113)(78 112)(79 111)(80 110)(81 109)(82 108)(83 107)(84 106)(85 120)(86 119)(87 118)(88 117)(89 116)(90 115)

G:=sub<Sym(120)| (1,58,28,39)(2,59,29,40)(3,60,30,41)(4,46,16,42)(5,47,17,43)(6,48,18,44)(7,49,19,45)(8,50,20,31)(9,51,21,32)(10,52,22,33)(11,53,23,34)(12,54,24,35)(13,55,25,36)(14,56,26,37)(15,57,27,38)(61,95,80,118)(62,96,81,119)(63,97,82,120)(64,98,83,106)(65,99,84,107)(66,100,85,108)(67,101,86,109)(68,102,87,110)(69,103,88,111)(70,104,89,112)(71,105,90,113)(72,91,76,114)(73,92,77,115)(74,93,78,116)(75,94,79,117), (1,84,28,65)(2,85,29,66)(3,86,30,67)(4,87,16,68)(5,88,17,69)(6,89,18,70)(7,90,19,71)(8,76,20,72)(9,77,21,73)(10,78,22,74)(11,79,23,75)(12,80,24,61)(13,81,25,62)(14,82,26,63)(15,83,27,64)(31,114,50,91)(32,115,51,92)(33,116,52,93)(34,117,53,94)(35,118,54,95)(36,119,55,96)(37,120,56,97)(38,106,57,98)(39,107,58,99)(40,108,59,100)(41,109,60,101)(42,110,46,102)(43,111,47,103)(44,112,48,104)(45,113,49,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,38)(2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,45)(10,44)(11,43)(12,42)(13,41)(14,40)(15,39)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,60)(26,59)(27,58)(28,57)(29,56)(30,55)(61,102)(62,101)(63,100)(64,99)(65,98)(66,97)(67,96)(68,95)(69,94)(70,93)(71,92)(72,91)(73,105)(74,104)(75,103)(76,114)(77,113)(78,112)(79,111)(80,110)(81,109)(82,108)(83,107)(84,106)(85,120)(86,119)(87,118)(88,117)(89,116)(90,115)>;

G:=Group( (1,58,28,39)(2,59,29,40)(3,60,30,41)(4,46,16,42)(5,47,17,43)(6,48,18,44)(7,49,19,45)(8,50,20,31)(9,51,21,32)(10,52,22,33)(11,53,23,34)(12,54,24,35)(13,55,25,36)(14,56,26,37)(15,57,27,38)(61,95,80,118)(62,96,81,119)(63,97,82,120)(64,98,83,106)(65,99,84,107)(66,100,85,108)(67,101,86,109)(68,102,87,110)(69,103,88,111)(70,104,89,112)(71,105,90,113)(72,91,76,114)(73,92,77,115)(74,93,78,116)(75,94,79,117), (1,84,28,65)(2,85,29,66)(3,86,30,67)(4,87,16,68)(5,88,17,69)(6,89,18,70)(7,90,19,71)(8,76,20,72)(9,77,21,73)(10,78,22,74)(11,79,23,75)(12,80,24,61)(13,81,25,62)(14,82,26,63)(15,83,27,64)(31,114,50,91)(32,115,51,92)(33,116,52,93)(34,117,53,94)(35,118,54,95)(36,119,55,96)(37,120,56,97)(38,106,57,98)(39,107,58,99)(40,108,59,100)(41,109,60,101)(42,110,46,102)(43,111,47,103)(44,112,48,104)(45,113,49,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,38)(2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,45)(10,44)(11,43)(12,42)(13,41)(14,40)(15,39)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,60)(26,59)(27,58)(28,57)(29,56)(30,55)(61,102)(62,101)(63,100)(64,99)(65,98)(66,97)(67,96)(68,95)(69,94)(70,93)(71,92)(72,91)(73,105)(74,104)(75,103)(76,114)(77,113)(78,112)(79,111)(80,110)(81,109)(82,108)(83,107)(84,106)(85,120)(86,119)(87,118)(88,117)(89,116)(90,115) );

G=PermutationGroup([[(1,58,28,39),(2,59,29,40),(3,60,30,41),(4,46,16,42),(5,47,17,43),(6,48,18,44),(7,49,19,45),(8,50,20,31),(9,51,21,32),(10,52,22,33),(11,53,23,34),(12,54,24,35),(13,55,25,36),(14,56,26,37),(15,57,27,38),(61,95,80,118),(62,96,81,119),(63,97,82,120),(64,98,83,106),(65,99,84,107),(66,100,85,108),(67,101,86,109),(68,102,87,110),(69,103,88,111),(70,104,89,112),(71,105,90,113),(72,91,76,114),(73,92,77,115),(74,93,78,116),(75,94,79,117)], [(1,84,28,65),(2,85,29,66),(3,86,30,67),(4,87,16,68),(5,88,17,69),(6,89,18,70),(7,90,19,71),(8,76,20,72),(9,77,21,73),(10,78,22,74),(11,79,23,75),(12,80,24,61),(13,81,25,62),(14,82,26,63),(15,83,27,64),(31,114,50,91),(32,115,51,92),(33,116,52,93),(34,117,53,94),(35,118,54,95),(36,119,55,96),(37,120,56,97),(38,106,57,98),(39,107,58,99),(40,108,59,100),(41,109,60,101),(42,110,46,102),(43,111,47,103),(44,112,48,104),(45,113,49,105)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,38),(2,37),(3,36),(4,35),(5,34),(6,33),(7,32),(8,31),(9,45),(10,44),(11,43),(12,42),(13,41),(14,40),(15,39),(16,54),(17,53),(18,52),(19,51),(20,50),(21,49),(22,48),(23,47),(24,46),(25,60),(26,59),(27,58),(28,57),(29,56),(30,55),(61,102),(62,101),(63,100),(64,99),(65,98),(66,97),(67,96),(68,95),(69,94),(70,93),(71,92),(72,91),(73,105),(74,104),(75,103),(76,114),(77,113),(78,112),(79,111),(80,110),(81,109),(82,108),(83,107),(84,106),(85,120),(86,119),(87,118),(88,117),(89,116),(90,115)]])

Q8:3D15 is a maximal subgroup of
D60:C22  C60.C23  D20.16D6  D12.D10  Q8:3D30  D4.5D30  Q16:D15  D120:8C2  C30.33C24  D5xQ8:3S3  S3xQ8:2D5  D20:17D6  Q8.15D30  C4oD4xD15  D4:8D30
Q8:3D15 is a maximal quotient of
C4.Dic30  C4:C4:7D15  D60:11C4  D30.29D4  C4:D60  C4:C4:D15  Q8xDic15  D30:7Q8  C60.23D4

45 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E5A5B 6 10A10B12A12B12C15A15B15C15D20A···20F30A30B30C30D60A···60L
order1222234444455610101212121515151520···203030303060···60
size11303030222215152222244422224···422224···4

45 irreducible representations

dim11112222222444
type+++++++++++++
imageC1C2C2C2S3D5D6C4oD4D10D15D30Q8:3S3Q8:2D5Q8:3D15
kernelQ8:3D15C4xD15D60Q8xC15C5xQ8C3xQ8C20C15C12Q8C4C5C3C1
# reps133112326412124

Matrix representation of Q8:3D15 in GL4(F61) generated by

60000
06000
0001
00600
,
1000
0100
00050
00500
,
95600
53800
0010
0001
,
52500
45900
0001
0010
G:=sub<GL(4,GF(61))| [60,0,0,0,0,60,0,0,0,0,0,60,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,0,50,0,0,50,0],[9,5,0,0,56,38,0,0,0,0,1,0,0,0,0,1],[52,45,0,0,5,9,0,0,0,0,0,1,0,0,1,0] >;

Q8:3D15 in GAP, Magma, Sage, TeX

Q_8\rtimes_3D_{15}
% in TeX

G:=Group("Q8:3D15");
// GroupNames label

G:=SmallGroup(240,182);
// by ID

G=gap.SmallGroup(240,182);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,55,218,116,50,964,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^15=d^2=1,b^2=a^2,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<