Copied to
clipboard

G = Q83D15order 240 = 24·3·5

The semidirect product of Q8 and D15 acting through Inn(Q8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D604C2, Q83D15, C4.7D30, C20.21D6, C12.21D10, C60.7C22, C30.35C23, D30.7C22, Dic15.17C22, (C5×Q8)⋊5S3, (C3×Q8)⋊3D5, (C4×D15)⋊3C2, (Q8×C15)⋊3C2, C1517(C4○D4), C53(Q83S3), C33(Q82D5), C6.35(C22×D5), C2.9(C22×D15), C10.35(C22×S3), SmallGroup(240,182)

Series: Derived Chief Lower central Upper central

C1C30 — Q83D15
C1C5C15C30D30C4×D15 — Q83D15
C15C30 — Q83D15
C1C2Q8

Generators and relations for Q83D15
 G = < a,b,c,d | a4=c15=d2=1, b2=a2, bab-1=dad=a-1, ac=ca, bc=cb, bd=db, dcd=c-1 >

Subgroups: 432 in 80 conjugacy classes, 35 normal (14 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C2×C4, D4, Q8, D5, C10, Dic3, C12, D6, C15, C4○D4, Dic5, C20, D10, C4×S3, D12, C3×Q8, D15, C30, C4×D5, D20, C5×Q8, Q83S3, Dic15, C60, D30, Q82D5, C4×D15, D60, Q8×C15, Q83D15
Quotients: C1, C2, C22, S3, C23, D5, D6, C4○D4, D10, C22×S3, D15, C22×D5, Q83S3, D30, Q82D5, C22×D15, Q83D15

Smallest permutation representation of Q83D15
On 120 points
Generators in S120
(1 58 28 39)(2 59 29 40)(3 60 30 41)(4 46 16 42)(5 47 17 43)(6 48 18 44)(7 49 19 45)(8 50 20 31)(9 51 21 32)(10 52 22 33)(11 53 23 34)(12 54 24 35)(13 55 25 36)(14 56 26 37)(15 57 27 38)(61 95 80 118)(62 96 81 119)(63 97 82 120)(64 98 83 106)(65 99 84 107)(66 100 85 108)(67 101 86 109)(68 102 87 110)(69 103 88 111)(70 104 89 112)(71 105 90 113)(72 91 76 114)(73 92 77 115)(74 93 78 116)(75 94 79 117)
(1 84 28 65)(2 85 29 66)(3 86 30 67)(4 87 16 68)(5 88 17 69)(6 89 18 70)(7 90 19 71)(8 76 20 72)(9 77 21 73)(10 78 22 74)(11 79 23 75)(12 80 24 61)(13 81 25 62)(14 82 26 63)(15 83 27 64)(31 114 50 91)(32 115 51 92)(33 116 52 93)(34 117 53 94)(35 118 54 95)(36 119 55 96)(37 120 56 97)(38 106 57 98)(39 107 58 99)(40 108 59 100)(41 109 60 101)(42 110 46 102)(43 111 47 103)(44 112 48 104)(45 113 49 105)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 38)(2 37)(3 36)(4 35)(5 34)(6 33)(7 32)(8 31)(9 45)(10 44)(11 43)(12 42)(13 41)(14 40)(15 39)(16 54)(17 53)(18 52)(19 51)(20 50)(21 49)(22 48)(23 47)(24 46)(25 60)(26 59)(27 58)(28 57)(29 56)(30 55)(61 102)(62 101)(63 100)(64 99)(65 98)(66 97)(67 96)(68 95)(69 94)(70 93)(71 92)(72 91)(73 105)(74 104)(75 103)(76 114)(77 113)(78 112)(79 111)(80 110)(81 109)(82 108)(83 107)(84 106)(85 120)(86 119)(87 118)(88 117)(89 116)(90 115)

G:=sub<Sym(120)| (1,58,28,39)(2,59,29,40)(3,60,30,41)(4,46,16,42)(5,47,17,43)(6,48,18,44)(7,49,19,45)(8,50,20,31)(9,51,21,32)(10,52,22,33)(11,53,23,34)(12,54,24,35)(13,55,25,36)(14,56,26,37)(15,57,27,38)(61,95,80,118)(62,96,81,119)(63,97,82,120)(64,98,83,106)(65,99,84,107)(66,100,85,108)(67,101,86,109)(68,102,87,110)(69,103,88,111)(70,104,89,112)(71,105,90,113)(72,91,76,114)(73,92,77,115)(74,93,78,116)(75,94,79,117), (1,84,28,65)(2,85,29,66)(3,86,30,67)(4,87,16,68)(5,88,17,69)(6,89,18,70)(7,90,19,71)(8,76,20,72)(9,77,21,73)(10,78,22,74)(11,79,23,75)(12,80,24,61)(13,81,25,62)(14,82,26,63)(15,83,27,64)(31,114,50,91)(32,115,51,92)(33,116,52,93)(34,117,53,94)(35,118,54,95)(36,119,55,96)(37,120,56,97)(38,106,57,98)(39,107,58,99)(40,108,59,100)(41,109,60,101)(42,110,46,102)(43,111,47,103)(44,112,48,104)(45,113,49,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,38)(2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,45)(10,44)(11,43)(12,42)(13,41)(14,40)(15,39)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,60)(26,59)(27,58)(28,57)(29,56)(30,55)(61,102)(62,101)(63,100)(64,99)(65,98)(66,97)(67,96)(68,95)(69,94)(70,93)(71,92)(72,91)(73,105)(74,104)(75,103)(76,114)(77,113)(78,112)(79,111)(80,110)(81,109)(82,108)(83,107)(84,106)(85,120)(86,119)(87,118)(88,117)(89,116)(90,115)>;

G:=Group( (1,58,28,39)(2,59,29,40)(3,60,30,41)(4,46,16,42)(5,47,17,43)(6,48,18,44)(7,49,19,45)(8,50,20,31)(9,51,21,32)(10,52,22,33)(11,53,23,34)(12,54,24,35)(13,55,25,36)(14,56,26,37)(15,57,27,38)(61,95,80,118)(62,96,81,119)(63,97,82,120)(64,98,83,106)(65,99,84,107)(66,100,85,108)(67,101,86,109)(68,102,87,110)(69,103,88,111)(70,104,89,112)(71,105,90,113)(72,91,76,114)(73,92,77,115)(74,93,78,116)(75,94,79,117), (1,84,28,65)(2,85,29,66)(3,86,30,67)(4,87,16,68)(5,88,17,69)(6,89,18,70)(7,90,19,71)(8,76,20,72)(9,77,21,73)(10,78,22,74)(11,79,23,75)(12,80,24,61)(13,81,25,62)(14,82,26,63)(15,83,27,64)(31,114,50,91)(32,115,51,92)(33,116,52,93)(34,117,53,94)(35,118,54,95)(36,119,55,96)(37,120,56,97)(38,106,57,98)(39,107,58,99)(40,108,59,100)(41,109,60,101)(42,110,46,102)(43,111,47,103)(44,112,48,104)(45,113,49,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,38)(2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,45)(10,44)(11,43)(12,42)(13,41)(14,40)(15,39)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,60)(26,59)(27,58)(28,57)(29,56)(30,55)(61,102)(62,101)(63,100)(64,99)(65,98)(66,97)(67,96)(68,95)(69,94)(70,93)(71,92)(72,91)(73,105)(74,104)(75,103)(76,114)(77,113)(78,112)(79,111)(80,110)(81,109)(82,108)(83,107)(84,106)(85,120)(86,119)(87,118)(88,117)(89,116)(90,115) );

G=PermutationGroup([[(1,58,28,39),(2,59,29,40),(3,60,30,41),(4,46,16,42),(5,47,17,43),(6,48,18,44),(7,49,19,45),(8,50,20,31),(9,51,21,32),(10,52,22,33),(11,53,23,34),(12,54,24,35),(13,55,25,36),(14,56,26,37),(15,57,27,38),(61,95,80,118),(62,96,81,119),(63,97,82,120),(64,98,83,106),(65,99,84,107),(66,100,85,108),(67,101,86,109),(68,102,87,110),(69,103,88,111),(70,104,89,112),(71,105,90,113),(72,91,76,114),(73,92,77,115),(74,93,78,116),(75,94,79,117)], [(1,84,28,65),(2,85,29,66),(3,86,30,67),(4,87,16,68),(5,88,17,69),(6,89,18,70),(7,90,19,71),(8,76,20,72),(9,77,21,73),(10,78,22,74),(11,79,23,75),(12,80,24,61),(13,81,25,62),(14,82,26,63),(15,83,27,64),(31,114,50,91),(32,115,51,92),(33,116,52,93),(34,117,53,94),(35,118,54,95),(36,119,55,96),(37,120,56,97),(38,106,57,98),(39,107,58,99),(40,108,59,100),(41,109,60,101),(42,110,46,102),(43,111,47,103),(44,112,48,104),(45,113,49,105)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,38),(2,37),(3,36),(4,35),(5,34),(6,33),(7,32),(8,31),(9,45),(10,44),(11,43),(12,42),(13,41),(14,40),(15,39),(16,54),(17,53),(18,52),(19,51),(20,50),(21,49),(22,48),(23,47),(24,46),(25,60),(26,59),(27,58),(28,57),(29,56),(30,55),(61,102),(62,101),(63,100),(64,99),(65,98),(66,97),(67,96),(68,95),(69,94),(70,93),(71,92),(72,91),(73,105),(74,104),(75,103),(76,114),(77,113),(78,112),(79,111),(80,110),(81,109),(82,108),(83,107),(84,106),(85,120),(86,119),(87,118),(88,117),(89,116),(90,115)]])

Q83D15 is a maximal subgroup of
D60⋊C22  C60.C23  D20.16D6  D12.D10  Q83D30  D4.5D30  Q16⋊D15  D1208C2  C30.33C24  D5×Q83S3  S3×Q82D5  D2017D6  Q8.15D30  C4○D4×D15  D48D30
Q83D15 is a maximal quotient of
C4.Dic30  C4⋊C47D15  D6011C4  D30.29D4  C4⋊D60  C4⋊C4⋊D15  Q8×Dic15  D307Q8  C60.23D4

45 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E5A5B 6 10A10B12A12B12C15A15B15C15D20A···20F30A30B30C30D60A···60L
order1222234444455610101212121515151520···203030303060···60
size11303030222215152222244422224···422224···4

45 irreducible representations

dim11112222222444
type+++++++++++++
imageC1C2C2C2S3D5D6C4○D4D10D15D30Q83S3Q82D5Q83D15
kernelQ83D15C4×D15D60Q8×C15C5×Q8C3×Q8C20C15C12Q8C4C5C3C1
# reps133112326412124

Matrix representation of Q83D15 in GL4(𝔽61) generated by

60000
06000
0001
00600
,
1000
0100
00050
00500
,
95600
53800
0010
0001
,
52500
45900
0001
0010
G:=sub<GL(4,GF(61))| [60,0,0,0,0,60,0,0,0,0,0,60,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,0,50,0,0,50,0],[9,5,0,0,56,38,0,0,0,0,1,0,0,0,0,1],[52,45,0,0,5,9,0,0,0,0,0,1,0,0,1,0] >;

Q83D15 in GAP, Magma, Sage, TeX

Q_8\rtimes_3D_{15}
% in TeX

G:=Group("Q8:3D15");
// GroupNames label

G:=SmallGroup(240,182);
// by ID

G=gap.SmallGroup(240,182);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,55,218,116,50,964,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^15=d^2=1,b^2=a^2,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽