Extensions 1→N→G→Q→1 with N=C2xD4 and Q=D7

Direct product G=NxQ with N=C2xD4 and Q=D7
dρLabelID
C2xD4xD756C2xD4xD7224,178

Semidirect products G=N:Q with N=C2xD4 and Q=D7
extensionφ:Q→Out NdρLabelID
(C2xD4):1D7 = C2xD4:D7φ: D7/C7C2 ⊆ Out C2xD4112(C2xD4):1D7224,126
(C2xD4):2D7 = D4.D14φ: D7/C7C2 ⊆ Out C2xD4564(C2xD4):2D7224,127
(C2xD4):3D7 = C23:D14φ: D7/C7C2 ⊆ Out C2xD456(C2xD4):3D7224,132
(C2xD4):4D7 = C28:2D4φ: D7/C7C2 ⊆ Out C2xD4112(C2xD4):4D7224,133
(C2xD4):5D7 = Dic7:D4φ: D7/C7C2 ⊆ Out C2xD4112(C2xD4):5D7224,134
(C2xD4):6D7 = C28:D4φ: D7/C7C2 ⊆ Out C2xD4112(C2xD4):6D7224,135
(C2xD4):7D7 = D4:6D14φ: D7/C7C2 ⊆ Out C2xD4564(C2xD4):7D7224,180
(C2xD4):8D7 = C2xD4:2D7φ: trivial image112(C2xD4):8D7224,179

Non-split extensions G=N.Q with N=C2xD4 and Q=D7
extensionφ:Q→Out NdρLabelID
(C2xD4).1D7 = D4:Dic7φ: D7/C7C2 ⊆ Out C2xD4112(C2xD4).1D7224,38
(C2xD4).2D7 = C28.D4φ: D7/C7C2 ⊆ Out C2xD4564(C2xD4).2D7224,39
(C2xD4).3D7 = C23:Dic7φ: D7/C7C2 ⊆ Out C2xD4564(C2xD4).3D7224,40
(C2xD4).4D7 = C2xD4.D7φ: D7/C7C2 ⊆ Out C2xD4112(C2xD4).4D7224,128
(C2xD4).5D7 = C23.18D14φ: D7/C7C2 ⊆ Out C2xD4112(C2xD4).5D7224,130
(C2xD4).6D7 = C28.17D4φ: D7/C7C2 ⊆ Out C2xD4112(C2xD4).6D7224,131
(C2xD4).7D7 = D4xDic7φ: trivial image112(C2xD4).7D7224,129

׿
x
:
Z
F
o
wr
Q
<