Copied to
clipboard

G = D4.D14order 224 = 25·7

1st non-split extension by D4 of D14 acting via D14/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.6D14, C28.15D4, D286C22, C28.12C23, Dic145C22, D4⋊D75C2, (C2×D4)⋊2D7, C7⋊C83C22, C4○D283C2, (D4×C14)⋊2C2, C74(C8⋊C22), D4.D75C2, C14.45(C2×D4), (C2×C14).39D4, (C2×C4).17D14, C4.Dic76C2, C4.16(C7⋊D4), (C7×D4).6C22, C4.12(C22×D7), (C2×C28).30C22, C22.10(C7⋊D4), C2.9(C2×C7⋊D4), SmallGroup(224,127)

Series: Derived Chief Lower central Upper central

C1C28 — D4.D14
C1C7C14C28D28C4○D28 — D4.D14
C7C14C28 — D4.D14
C1C2C2×C4C2×D4

Generators and relations for D4.D14
 G = < a,b,c,d | a4=b2=1, c14=d2=a2, bab=dad-1=a-1, ac=ca, cbc-1=a2b, dbd-1=a-1b, dcd-1=c13 >

Subgroups: 254 in 68 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, C23, D7, C14, C14, M4(2), D8, SD16, C2×D4, C4○D4, Dic7, C28, D14, C2×C14, C2×C14, C8⋊C22, C7⋊C8, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C7×D4, C7×D4, C22×C14, C4.Dic7, D4⋊D7, D4.D7, C4○D28, D4×C14, D4.D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C8⋊C22, C7⋊D4, C22×D7, C2×C7⋊D4, D4.D14

Smallest permutation representation of D4.D14
On 56 points
Generators in S56
(1 22 15 8)(2 23 16 9)(3 24 17 10)(4 25 18 11)(5 26 19 12)(6 27 20 13)(7 28 21 14)(29 36 43 50)(30 37 44 51)(31 38 45 52)(32 39 46 53)(33 40 47 54)(34 41 48 55)(35 42 49 56)
(1 8)(2 23)(3 10)(4 25)(5 12)(6 27)(7 14)(9 16)(11 18)(13 20)(15 22)(17 24)(19 26)(21 28)(30 44)(32 46)(34 48)(36 50)(38 52)(40 54)(42 56)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 31 15 45)(2 44 16 30)(3 29 17 43)(4 42 18 56)(5 55 19 41)(6 40 20 54)(7 53 21 39)(8 38 22 52)(9 51 23 37)(10 36 24 50)(11 49 25 35)(12 34 26 48)(13 47 27 33)(14 32 28 46)

G:=sub<Sym(56)| (1,22,15,8)(2,23,16,9)(3,24,17,10)(4,25,18,11)(5,26,19,12)(6,27,20,13)(7,28,21,14)(29,36,43,50)(30,37,44,51)(31,38,45,52)(32,39,46,53)(33,40,47,54)(34,41,48,55)(35,42,49,56), (1,8)(2,23)(3,10)(4,25)(5,12)(6,27)(7,14)(9,16)(11,18)(13,20)(15,22)(17,24)(19,26)(21,28)(30,44)(32,46)(34,48)(36,50)(38,52)(40,54)(42,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,31,15,45)(2,44,16,30)(3,29,17,43)(4,42,18,56)(5,55,19,41)(6,40,20,54)(7,53,21,39)(8,38,22,52)(9,51,23,37)(10,36,24,50)(11,49,25,35)(12,34,26,48)(13,47,27,33)(14,32,28,46)>;

G:=Group( (1,22,15,8)(2,23,16,9)(3,24,17,10)(4,25,18,11)(5,26,19,12)(6,27,20,13)(7,28,21,14)(29,36,43,50)(30,37,44,51)(31,38,45,52)(32,39,46,53)(33,40,47,54)(34,41,48,55)(35,42,49,56), (1,8)(2,23)(3,10)(4,25)(5,12)(6,27)(7,14)(9,16)(11,18)(13,20)(15,22)(17,24)(19,26)(21,28)(30,44)(32,46)(34,48)(36,50)(38,52)(40,54)(42,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,31,15,45)(2,44,16,30)(3,29,17,43)(4,42,18,56)(5,55,19,41)(6,40,20,54)(7,53,21,39)(8,38,22,52)(9,51,23,37)(10,36,24,50)(11,49,25,35)(12,34,26,48)(13,47,27,33)(14,32,28,46) );

G=PermutationGroup([[(1,22,15,8),(2,23,16,9),(3,24,17,10),(4,25,18,11),(5,26,19,12),(6,27,20,13),(7,28,21,14),(29,36,43,50),(30,37,44,51),(31,38,45,52),(32,39,46,53),(33,40,47,54),(34,41,48,55),(35,42,49,56)], [(1,8),(2,23),(3,10),(4,25),(5,12),(6,27),(7,14),(9,16),(11,18),(13,20),(15,22),(17,24),(19,26),(21,28),(30,44),(32,46),(34,48),(36,50),(38,52),(40,54),(42,56)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,31,15,45),(2,44,16,30),(3,29,17,43),(4,42,18,56),(5,55,19,41),(6,40,20,54),(7,53,21,39),(8,38,22,52),(9,51,23,37),(10,36,24,50),(11,49,25,35),(12,34,26,48),(13,47,27,33),(14,32,28,46)]])

D4.D14 is a maximal subgroup of
D28.2D4  D28.3D4  D28.14D4  D285D4  C56.23D4  C56.44D4  D2818D4  D28.38D4  D813D14  D28.29D4  D7×C8⋊C22  SD16⋊D14  C28.C24  D28.32C23  D28.33C23
D4.D14 is a maximal quotient of
C4.Dic7⋊C4  C4○D28⋊C4  C4⋊C4.228D14  C4⋊C4.230D14  D4.3Dic14  C42.48D14  D4.1D28  C42.51D14  (C2×D4).D14  D2817D4  C4⋊D4⋊D7  C7⋊C85D4  C42.72D14  C282D8  C42.74D14  Dic149D4  C42.76D14  D285Q8  C42.82D14  Dic145Q8  (D4×C14)⋊6C4  (C2×C14)⋊8D8  (C7×D4).31D4

41 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A7B7C8A8B14A···14I14J···14U28A···28F
order1222224447778814···1414···1428···28
size1124428222822228282···24···44···4

41 irreducible representations

dim111111222222244
type++++++++++++
imageC1C2C2C2C2C2D4D4D7D14D14C7⋊D4C7⋊D4C8⋊C22D4.D14
kernelD4.D14C4.Dic7D4⋊D7D4.D7C4○D28D4×C14C28C2×C14C2×D4C2×C4D4C4C22C7C1
# reps112211113366616

Matrix representation of D4.D14 in GL4(𝔽113) generated by

19900
9711200
0011214
00161
,
19900
011200
001120
00161
,
1095600
64400
002860
00485
,
002860
00485
1095600
64400
G:=sub<GL(4,GF(113))| [1,97,0,0,99,112,0,0,0,0,112,16,0,0,14,1],[1,0,0,0,99,112,0,0,0,0,112,16,0,0,0,1],[109,64,0,0,56,4,0,0,0,0,28,4,0,0,60,85],[0,0,109,64,0,0,56,4,28,4,0,0,60,85,0,0] >;

D4.D14 in GAP, Magma, Sage, TeX

D_4.D_{14}
% in TeX

G:=Group("D4.D14");
// GroupNames label

G:=SmallGroup(224,127);
// by ID

G=gap.SmallGroup(224,127);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,103,218,188,579,159,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^14=d^2=a^2,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^13>;
// generators/relations

׿
×
𝔽