Extensions 1→N→G→Q→1 with N=C2xD4 and Q=C14

Direct product G=NxQ with N=C2xD4 and Q=C14
dρLabelID
D4xC2xC14112D4xC2xC14224,190

Semidirect products G=N:Q with N=C2xD4 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2xD4):1C14 = C7xC22wrC2φ: C14/C7C2 ⊆ Out C2xD456(C2xD4):1C14224,155
(C2xD4):2C14 = C7xC4:D4φ: C14/C7C2 ⊆ Out C2xD4112(C2xD4):2C14224,156
(C2xD4):3C14 = C7xC4:1D4φ: C14/C7C2 ⊆ Out C2xD4112(C2xD4):3C14224,162
(C2xD4):4C14 = C14xD8φ: C14/C7C2 ⊆ Out C2xD4112(C2xD4):4C14224,167
(C2xD4):5C14 = C7xC8:C22φ: C14/C7C2 ⊆ Out C2xD4564(C2xD4):5C14224,171
(C2xD4):6C14 = C7x2+ 1+4φ: C14/C7C2 ⊆ Out C2xD4564(C2xD4):6C14224,193
(C2xD4):7C14 = C14xC4oD4φ: trivial image112(C2xD4):7C14224,192

Non-split extensions G=N.Q with N=C2xD4 and Q=C14
extensionφ:Q→Out NdρLabelID
(C2xD4).1C14 = C7xC23:C4φ: C14/C7C2 ⊆ Out C2xD4564(C2xD4).1C14224,48
(C2xD4).2C14 = C7xC4.D4φ: C14/C7C2 ⊆ Out C2xD4564(C2xD4).2C14224,49
(C2xD4).3C14 = C7xD4:C4φ: C14/C7C2 ⊆ Out C2xD4112(C2xD4).3C14224,51
(C2xD4).4C14 = C7xC22.D4φ: C14/C7C2 ⊆ Out C2xD4112(C2xD4).4C14224,158
(C2xD4).5C14 = C7xC4.4D4φ: C14/C7C2 ⊆ Out C2xD4112(C2xD4).5C14224,159
(C2xD4).6C14 = C14xSD16φ: C14/C7C2 ⊆ Out C2xD4112(C2xD4).6C14224,168
(C2xD4).7C14 = D4xC28φ: trivial image112(C2xD4).7C14224,153

׿
x
:
Z
F
o
wr
Q
<