Extensions 1→N→G→Q→1 with N=C2 and Q=C3⋊D20

Direct product G=N×Q with N=C2 and Q=C3⋊D20
dρLabelID
C2×C3⋊D20120C2xC3:D20240,146


Non-split extensions G=N.Q with N=C2 and Q=C3⋊D20
extensionφ:Q→Aut NdρLabelID
C2.1(C3⋊D20) = D10⋊Dic3central extension (φ=1)120C2.1(C3:D20)240,26
C2.2(C3⋊D20) = D304C4central extension (φ=1)120C2.2(C3:D20)240,28
C2.3(C3⋊D20) = C6.Dic10central extension (φ=1)240C2.3(C3:D20)240,31
C2.4(C3⋊D20) = C3⋊D40central stem extension (φ=1)1204+C2.4(C3:D20)240,14
C2.5(C3⋊D20) = C6.D20central stem extension (φ=1)1204-C2.5(C3:D20)240,18
C2.6(C3⋊D20) = C15⋊SD16central stem extension (φ=1)1204+C2.6(C3:D20)240,19
C2.7(C3⋊D20) = C3⋊Dic20central stem extension (φ=1)2404-C2.7(C3:D20)240,23

׿
×
𝔽