Copied to
clipboard

G = C6.D20order 240 = 24·3·5

2nd non-split extension by C6 of D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6.7D20, C30.6D4, C153SD16, D20.1S3, C12.5D10, C20.23D6, Dic305C2, C60.9C22, C3⋊C82D5, C4.2(S3×D5), C33(C40⋊C2), C51(D4.S3), (C3×D20).1C2, C10.2(C3⋊D4), C2.5(C3⋊D20), (C5×C3⋊C8)⋊2C2, SmallGroup(240,18)

Series: Derived Chief Lower central Upper central

C1C60 — C6.D20
C1C5C15C30C60C3×D20 — C6.D20
C15C30C60 — C6.D20
C1C2C4

Generators and relations for C6.D20
 G = < a,b,c | a6=1, b20=c2=a3, bab-1=cac-1=a-1, cbc-1=b19 >

20C2
10C22
30C4
20C6
4D5
3C8
5D4
15Q8
10Dic3
10C2×C6
2D10
6Dic5
4C3×D5
15SD16
5Dic6
5C3×D4
3C40
3Dic10
2C6×D5
2Dic15
5D4.S3
3C40⋊C2

Smallest permutation representation of C6.D20
On 120 points
Generators in S120
(1 71 119 21 51 99)(2 100 52 22 120 72)(3 73 81 23 53 101)(4 102 54 24 82 74)(5 75 83 25 55 103)(6 104 56 26 84 76)(7 77 85 27 57 105)(8 106 58 28 86 78)(9 79 87 29 59 107)(10 108 60 30 88 80)(11 41 89 31 61 109)(12 110 62 32 90 42)(13 43 91 33 63 111)(14 112 64 34 92 44)(15 45 93 35 65 113)(16 114 66 36 94 46)(17 47 95 37 67 115)(18 116 68 38 96 48)(19 49 97 39 69 117)(20 118 70 40 98 50)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 20 21 40)(2 39 22 19)(3 18 23 38)(4 37 24 17)(5 16 25 36)(6 35 26 15)(7 14 27 34)(8 33 28 13)(9 12 29 32)(10 31 30 11)(41 80 61 60)(42 59 62 79)(43 78 63 58)(44 57 64 77)(45 76 65 56)(46 55 66 75)(47 74 67 54)(48 53 68 73)(49 72 69 52)(50 51 70 71)(81 96 101 116)(82 115 102 95)(83 94 103 114)(84 113 104 93)(85 92 105 112)(86 111 106 91)(87 90 107 110)(88 109 108 89)(97 120 117 100)(98 99 118 119)

G:=sub<Sym(120)| (1,71,119,21,51,99)(2,100,52,22,120,72)(3,73,81,23,53,101)(4,102,54,24,82,74)(5,75,83,25,55,103)(6,104,56,26,84,76)(7,77,85,27,57,105)(8,106,58,28,86,78)(9,79,87,29,59,107)(10,108,60,30,88,80)(11,41,89,31,61,109)(12,110,62,32,90,42)(13,43,91,33,63,111)(14,112,64,34,92,44)(15,45,93,35,65,113)(16,114,66,36,94,46)(17,47,95,37,67,115)(18,116,68,38,96,48)(19,49,97,39,69,117)(20,118,70,40,98,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,20,21,40)(2,39,22,19)(3,18,23,38)(4,37,24,17)(5,16,25,36)(6,35,26,15)(7,14,27,34)(8,33,28,13)(9,12,29,32)(10,31,30,11)(41,80,61,60)(42,59,62,79)(43,78,63,58)(44,57,64,77)(45,76,65,56)(46,55,66,75)(47,74,67,54)(48,53,68,73)(49,72,69,52)(50,51,70,71)(81,96,101,116)(82,115,102,95)(83,94,103,114)(84,113,104,93)(85,92,105,112)(86,111,106,91)(87,90,107,110)(88,109,108,89)(97,120,117,100)(98,99,118,119)>;

G:=Group( (1,71,119,21,51,99)(2,100,52,22,120,72)(3,73,81,23,53,101)(4,102,54,24,82,74)(5,75,83,25,55,103)(6,104,56,26,84,76)(7,77,85,27,57,105)(8,106,58,28,86,78)(9,79,87,29,59,107)(10,108,60,30,88,80)(11,41,89,31,61,109)(12,110,62,32,90,42)(13,43,91,33,63,111)(14,112,64,34,92,44)(15,45,93,35,65,113)(16,114,66,36,94,46)(17,47,95,37,67,115)(18,116,68,38,96,48)(19,49,97,39,69,117)(20,118,70,40,98,50), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,20,21,40)(2,39,22,19)(3,18,23,38)(4,37,24,17)(5,16,25,36)(6,35,26,15)(7,14,27,34)(8,33,28,13)(9,12,29,32)(10,31,30,11)(41,80,61,60)(42,59,62,79)(43,78,63,58)(44,57,64,77)(45,76,65,56)(46,55,66,75)(47,74,67,54)(48,53,68,73)(49,72,69,52)(50,51,70,71)(81,96,101,116)(82,115,102,95)(83,94,103,114)(84,113,104,93)(85,92,105,112)(86,111,106,91)(87,90,107,110)(88,109,108,89)(97,120,117,100)(98,99,118,119) );

G=PermutationGroup([[(1,71,119,21,51,99),(2,100,52,22,120,72),(3,73,81,23,53,101),(4,102,54,24,82,74),(5,75,83,25,55,103),(6,104,56,26,84,76),(7,77,85,27,57,105),(8,106,58,28,86,78),(9,79,87,29,59,107),(10,108,60,30,88,80),(11,41,89,31,61,109),(12,110,62,32,90,42),(13,43,91,33,63,111),(14,112,64,34,92,44),(15,45,93,35,65,113),(16,114,66,36,94,46),(17,47,95,37,67,115),(18,116,68,38,96,48),(19,49,97,39,69,117),(20,118,70,40,98,50)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,20,21,40),(2,39,22,19),(3,18,23,38),(4,37,24,17),(5,16,25,36),(6,35,26,15),(7,14,27,34),(8,33,28,13),(9,12,29,32),(10,31,30,11),(41,80,61,60),(42,59,62,79),(43,78,63,58),(44,57,64,77),(45,76,65,56),(46,55,66,75),(47,74,67,54),(48,53,68,73),(49,72,69,52),(50,51,70,71),(81,96,101,116),(82,115,102,95),(83,94,103,114),(84,113,104,93),(85,92,105,112),(86,111,106,91),(87,90,107,110),(88,109,108,89),(97,120,117,100),(98,99,118,119)]])

C6.D20 is a maximal subgroup of
S3×C40⋊C2  D40⋊S3  D407S3  C40.2D6  D20.31D6  D6030C22  C60.63D4  D30.8D4  D5×D4.S3  D1210D10  D20.10D6  D15⋊SD16  D20.13D6  D20.14D6  D20.17D6
C6.D20 is a maximal quotient of
C6.D40  Dic3012C4  C60.Q8

36 conjugacy classes

class 1 2A2B 3 4A4B5A5B6A6B6C8A8B10A10B 12 15A15B20A20B20C20D30A30B40A···40H60A60B60C60D
order1223445566688101012151520202020303040···4060606060
size11202260222202066224442222446···64444

36 irreducible representations

dim11112222222224444
type++++++++++-++-
imageC1C2C2C2S3D4D5D6SD16D10C3⋊D4D20C40⋊C2D4.S3S3×D5C3⋊D20C6.D20
kernelC6.D20C5×C3⋊C8C3×D20Dic30D20C30C3⋊C8C20C15C12C10C6C3C5C4C2C1
# reps11111121222481224

Matrix representation of C6.D20 in GL4(𝔽241) generated by

240000
024000
0023949
001771
,
9410600
16620000
0014541
002896
,
10922600
3713200
0014541
002896
G:=sub<GL(4,GF(241))| [240,0,0,0,0,240,0,0,0,0,239,177,0,0,49,1],[94,166,0,0,106,200,0,0,0,0,145,28,0,0,41,96],[109,37,0,0,226,132,0,0,0,0,145,28,0,0,41,96] >;

C6.D20 in GAP, Magma, Sage, TeX

C_6.D_{20}
% in TeX

G:=Group("C6.D20");
// GroupNames label

G:=SmallGroup(240,18);
// by ID

G=gap.SmallGroup(240,18);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,73,31,218,50,490,6917]);
// Polycyclic

G:=Group<a,b,c|a^6=1,b^20=c^2=a^3,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=b^19>;
// generators/relations

Export

Subgroup lattice of C6.D20 in TeX

׿
×
𝔽