Copied to
clipboard

G = C15⋊SD16order 240 = 24·3·5

4th semidirect product of C15 and SD16 acting via SD16/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6.8D20, C30.7D4, C154SD16, D60.3C2, C12.6D10, C20.24D6, Dic101S3, C60.10C22, C3⋊C83D5, C4.3(S3×D5), C32(C40⋊C2), C51(Q82S3), (C3×Dic10)⋊1C2, C10.3(C3⋊D4), C2.6(C3⋊D20), (C5×C3⋊C8)⋊3C2, SmallGroup(240,19)

Series: Derived Chief Lower central Upper central

C1C60 — C15⋊SD16
C1C5C15C30C60C3×Dic10 — C15⋊SD16
C15C30C60 — C15⋊SD16
C1C2C4

Generators and relations for C15⋊SD16
 G = < a,b,c | a15=b8=c2=1, bab-1=a11, cac=a-1, cbc=b3 >

60C2
10C4
30C22
20S3
12D5
3C8
5Q8
15D4
10D6
10C12
2Dic5
6D10
4D15
15SD16
5D12
5C3×Q8
3C40
3D20
2C3×Dic5
2D30
5Q82S3
3C40⋊C2

Smallest permutation representation of C15⋊SD16
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 87 31 114 24 66 54 100)(2 83 32 110 25 62 55 96)(3 79 33 106 26 73 56 92)(4 90 34 117 27 69 57 103)(5 86 35 113 28 65 58 99)(6 82 36 109 29 61 59 95)(7 78 37 120 30 72 60 91)(8 89 38 116 16 68 46 102)(9 85 39 112 17 64 47 98)(10 81 40 108 18 75 48 94)(11 77 41 119 19 71 49 105)(12 88 42 115 20 67 50 101)(13 84 43 111 21 63 51 97)(14 80 44 107 22 74 52 93)(15 76 45 118 23 70 53 104)
(1 31)(2 45)(3 44)(4 43)(5 42)(6 41)(7 40)(8 39)(9 38)(10 37)(11 36)(12 35)(13 34)(14 33)(15 32)(16 47)(17 46)(18 60)(19 59)(20 58)(21 57)(22 56)(23 55)(24 54)(25 53)(26 52)(27 51)(28 50)(29 49)(30 48)(61 77)(62 76)(63 90)(64 89)(65 88)(66 87)(67 86)(68 85)(69 84)(70 83)(71 82)(72 81)(73 80)(74 79)(75 78)(91 94)(92 93)(95 105)(96 104)(97 103)(98 102)(99 101)(106 107)(108 120)(109 119)(110 118)(111 117)(112 116)(113 115)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,87,31,114,24,66,54,100)(2,83,32,110,25,62,55,96)(3,79,33,106,26,73,56,92)(4,90,34,117,27,69,57,103)(5,86,35,113,28,65,58,99)(6,82,36,109,29,61,59,95)(7,78,37,120,30,72,60,91)(8,89,38,116,16,68,46,102)(9,85,39,112,17,64,47,98)(10,81,40,108,18,75,48,94)(11,77,41,119,19,71,49,105)(12,88,42,115,20,67,50,101)(13,84,43,111,21,63,51,97)(14,80,44,107,22,74,52,93)(15,76,45,118,23,70,53,104), (1,31)(2,45)(3,44)(4,43)(5,42)(6,41)(7,40)(8,39)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,32)(16,47)(17,46)(18,60)(19,59)(20,58)(21,57)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(29,49)(30,48)(61,77)(62,76)(63,90)(64,89)(65,88)(66,87)(67,86)(68,85)(69,84)(70,83)(71,82)(72,81)(73,80)(74,79)(75,78)(91,94)(92,93)(95,105)(96,104)(97,103)(98,102)(99,101)(106,107)(108,120)(109,119)(110,118)(111,117)(112,116)(113,115)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,87,31,114,24,66,54,100)(2,83,32,110,25,62,55,96)(3,79,33,106,26,73,56,92)(4,90,34,117,27,69,57,103)(5,86,35,113,28,65,58,99)(6,82,36,109,29,61,59,95)(7,78,37,120,30,72,60,91)(8,89,38,116,16,68,46,102)(9,85,39,112,17,64,47,98)(10,81,40,108,18,75,48,94)(11,77,41,119,19,71,49,105)(12,88,42,115,20,67,50,101)(13,84,43,111,21,63,51,97)(14,80,44,107,22,74,52,93)(15,76,45,118,23,70,53,104), (1,31)(2,45)(3,44)(4,43)(5,42)(6,41)(7,40)(8,39)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,32)(16,47)(17,46)(18,60)(19,59)(20,58)(21,57)(22,56)(23,55)(24,54)(25,53)(26,52)(27,51)(28,50)(29,49)(30,48)(61,77)(62,76)(63,90)(64,89)(65,88)(66,87)(67,86)(68,85)(69,84)(70,83)(71,82)(72,81)(73,80)(74,79)(75,78)(91,94)(92,93)(95,105)(96,104)(97,103)(98,102)(99,101)(106,107)(108,120)(109,119)(110,118)(111,117)(112,116)(113,115) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,87,31,114,24,66,54,100),(2,83,32,110,25,62,55,96),(3,79,33,106,26,73,56,92),(4,90,34,117,27,69,57,103),(5,86,35,113,28,65,58,99),(6,82,36,109,29,61,59,95),(7,78,37,120,30,72,60,91),(8,89,38,116,16,68,46,102),(9,85,39,112,17,64,47,98),(10,81,40,108,18,75,48,94),(11,77,41,119,19,71,49,105),(12,88,42,115,20,67,50,101),(13,84,43,111,21,63,51,97),(14,80,44,107,22,74,52,93),(15,76,45,118,23,70,53,104)], [(1,31),(2,45),(3,44),(4,43),(5,42),(6,41),(7,40),(8,39),(9,38),(10,37),(11,36),(12,35),(13,34),(14,33),(15,32),(16,47),(17,46),(18,60),(19,59),(20,58),(21,57),(22,56),(23,55),(24,54),(25,53),(26,52),(27,51),(28,50),(29,49),(30,48),(61,77),(62,76),(63,90),(64,89),(65,88),(66,87),(67,86),(68,85),(69,84),(70,83),(71,82),(72,81),(73,80),(74,79),(75,78),(91,94),(92,93),(95,105),(96,104),(97,103),(98,102),(99,101),(106,107),(108,120),(109,119),(110,118),(111,117),(112,116),(113,115)]])

C15⋊SD16 is a maximal subgroup of
S3×C40⋊C2  C401D6  Dic20⋊S3  D1205C2  D2019D6  D20.31D6  C12.D20  Dic103D6  Dic10⋊D6  C60.16C23  D125D10  D5×Q82S3  C60.C23  C60.39C23  D12.D10
C15⋊SD16 is a maximal quotient of
D6012C4  C6.Dic20  C60.Q8

36 conjugacy classes

class 1 2A2B 3 4A4B5A5B 6 8A8B10A10B12A12B12C15A15B20A20B20C20D30A30B40A···40H60A60B60C60D
order122344556881010121212151520202020303040···4060606060
size11602220222662242020442222446···64444

36 irreducible representations

dim11112222222224444
type++++++++++++++
imageC1C2C2C2S3D4D5D6SD16D10C3⋊D4D20C40⋊C2Q82S3S3×D5C3⋊D20C15⋊SD16
kernelC15⋊SD16C5×C3⋊C8C3×Dic10D60Dic10C30C3⋊C8C20C15C12C10C6C3C5C4C2C1
# reps11111121222481224

Matrix representation of C15⋊SD16 in GL4(𝔽241) generated by

24018900
525200
0015
00144239
,
1667200
1693700
00210218
0019931
,
418500
12220000
002400
00971
G:=sub<GL(4,GF(241))| [240,52,0,0,189,52,0,0,0,0,1,144,0,0,5,239],[166,169,0,0,72,37,0,0,0,0,210,199,0,0,218,31],[41,122,0,0,85,200,0,0,0,0,240,97,0,0,0,1] >;

C15⋊SD16 in GAP, Magma, Sage, TeX

C_{15}\rtimes {\rm SD}_{16}
% in TeX

G:=Group("C15:SD16");
// GroupNames label

G:=SmallGroup(240,19);
// by ID

G=gap.SmallGroup(240,19);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,48,73,31,218,50,490,6917]);
// Polycyclic

G:=Group<a,b,c|a^15=b^8=c^2=1,b*a*b^-1=a^11,c*a*c=a^-1,c*b*c=b^3>;
// generators/relations

Export

Subgroup lattice of C15⋊SD16 in TeX

׿
×
𝔽