Extensions 1→N→G→Q→1 with N=D30 and Q=C4

Direct product G=N×Q with N=D30 and Q=C4
dρLabelID
C2×C4×D15120C2xC4xD15240,176

Semidirect products G=N:Q with N=D30 and Q=C4
extensionφ:Q→Out NdρLabelID
D301C4 = D6⋊F5φ: C4/C1C4 ⊆ Out D30608+D30:1C4240,96
D302C4 = C2×S3×F5φ: C4/C1C4 ⊆ Out D30308+D30:2C4240,195
D303C4 = D303C4φ: C4/C2C2 ⊆ Out D30120D30:3C4240,75
D304C4 = D304C4φ: C4/C2C2 ⊆ Out D30120D30:4C4240,28
D305C4 = C2×D30.C2φ: C4/C2C2 ⊆ Out D30120D30:5C4240,144

Non-split extensions G=N.Q with N=D30 and Q=C4
extensionφ:Q→Out NdρLabelID
D30.1C4 = D15⋊C8φ: C4/C1C4 ⊆ Out D301208+D30.1C4240,99
D30.2C4 = Dic3.F5φ: C4/C1C4 ⊆ Out D301208+D30.2C4240,101
D30.3C4 = C40⋊S3φ: C4/C2C2 ⊆ Out D301202D30.3C4240,66
D30.4C4 = D152C8φ: C4/C2C2 ⊆ Out D301204D30.4C4240,9
D30.5C4 = D30.5C4φ: C4/C2C2 ⊆ Out D301204D30.5C4240,12
D30.6C4 = C8×D15φ: trivial image1202D30.6C4240,65

׿
×
𝔽