direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×S3×F5, D30⋊2C4, D10.8D6, C10⋊(C4×S3), C30⋊(C2×C4), (S3×D5)⋊C4, D5⋊(C4×S3), C3⋊F5⋊C22, D15⋊(C2×C4), C15⋊(C22×C4), C6⋊1(C2×F5), (C6×F5)⋊2C2, (S3×C10)⋊2C4, (C3×F5)⋊C22, C3⋊1(C22×F5), (C3×D5).C23, (S3×D5).C22, D5.1(C22×S3), (C6×D5).8C22, C5⋊(S3×C2×C4), (C5×S3)⋊(C2×C4), (C3×D5)⋊(C2×C4), (C2×C3⋊F5)⋊2C2, (C2×S3×D5).2C2, Aut(D30), Hol(C30), SmallGroup(240,195)
Series: Derived ►Chief ►Lower central ►Upper central
C15 — C2×S3×F5 |
Generators and relations for C2×S3×F5
G = < a,b,c,d,e | a2=b3=c2=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >
Subgroups: 488 in 108 conjugacy classes, 42 normal (22 characteristic)
C1, C2, C2, C3, C4, C22, C5, S3, S3, C6, C6, C2×C4, C23, D5, D5, C10, C10, Dic3, C12, D6, D6, C2×C6, C15, C22×C4, F5, F5, D10, D10, C2×C10, C4×S3, C2×Dic3, C2×C12, C22×S3, C5×S3, C3×D5, D15, C30, C2×F5, C2×F5, C22×D5, S3×C2×C4, C3×F5, C3⋊F5, S3×D5, C6×D5, S3×C10, D30, C22×F5, S3×F5, C6×F5, C2×C3⋊F5, C2×S3×D5, C2×S3×F5
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, F5, C4×S3, C22×S3, C2×F5, S3×C2×C4, C22×F5, S3×F5, C2×S3×F5
Character table of C2×S3×F5
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5 | 6A | 6B | 6C | 10A | 10B | 10C | 12A | 12B | 12C | 12D | 15 | 30 | |
size | 1 | 1 | 3 | 3 | 5 | 5 | 15 | 15 | 2 | 5 | 5 | 5 | 5 | 15 | 15 | 15 | 15 | 4 | 2 | 10 | 10 | 4 | 12 | 12 | 10 | 10 | 10 | 10 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | i | -i | i | -i | i | -i | i | -i | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -i | 1 | 1 | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | i | i | -i | i | -i | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | i | -i | i | 1 | 1 | linear of order 4 |
ρ11 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | i | i | -i | -i | i | i | -i | -i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -i | -i | i | i | 1 | -1 | linear of order 4 |
ρ12 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | -i | i | i | i | i | -i | -i | 1 | -1 | 1 | -1 | -1 | -1 | 1 | i | i | -i | -i | 1 | -1 | linear of order 4 |
ρ13 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | i | i | -i | -i | -i | -i | i | i | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -i | -i | i | i | 1 | -1 | linear of order 4 |
ρ14 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -i | -i | i | i | -i | -i | i | i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | i | i | -i | -i | 1 | -1 | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -i | -i | i | -i | i | 1 | 1 | -1 | -1 | 1 | -1 | -1 | i | -i | i | -i | 1 | 1 | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -i | i | -i | i | -i | i | -i | i | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | i | 1 | 1 | linear of order 4 |
ρ17 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ18 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -1 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | -1 | -2 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ20 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -1 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | -1 | -2 | 0 | 0 | 1 | -1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ21 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | -1 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 2 | 1 | -1 | 1 | -2 | 0 | 0 | -i | -i | i | i | -1 | 1 | complex lifted from C4×S3 |
ρ22 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -1 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 2 | -1 | 1 | 1 | 2 | 0 | 0 | i | -i | i | -i | -1 | -1 | complex lifted from C4×S3 |
ρ23 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | -1 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 2 | 1 | -1 | 1 | -2 | 0 | 0 | i | i | -i | -i | -1 | 1 | complex lifted from C4×S3 |
ρ24 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -1 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 2 | -1 | 1 | 1 | 2 | 0 | 0 | -i | i | -i | i | -1 | -1 | complex lifted from C4×S3 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 4 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from C2×F5 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -4 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | 1 | orthogonal lifted from C2×F5 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -4 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | orthogonal lifted from C2×F5 |
ρ28 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 4 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from F5 |
ρ29 | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | orthogonal lifted from S3×F5 |
ρ30 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 4 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | orthogonal faithful |
(1 16)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)
(1 6 11)(2 7 12)(3 8 13)(4 9 14)(5 10 15)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 26)(7 27)(8 28)(9 29)(10 30)(11 21)(12 22)(13 23)(14 24)(15 25)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 16)(2 18 5 19)(3 20 4 17)(6 21)(7 23 10 24)(8 25 9 22)(11 26)(12 28 15 29)(13 30 14 27)
G:=sub<Sym(30)| (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,16)(2,17)(3,18)(4,19)(5,20)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,16)(2,18,5,19)(3,20,4,17)(6,21)(7,23,10,24)(8,25,9,22)(11,26)(12,28,15,29)(13,30,14,27)>;
G:=Group( (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,16)(2,17)(3,18)(4,19)(5,20)(6,26)(7,27)(8,28)(9,29)(10,30)(11,21)(12,22)(13,23)(14,24)(15,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,16)(2,18,5,19)(3,20,4,17)(6,21)(7,23,10,24)(8,25,9,22)(11,26)(12,28,15,29)(13,30,14,27) );
G=PermutationGroup([[(1,16),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30)], [(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,26),(7,27),(8,28),(9,29),(10,30),(11,21),(12,22),(13,23),(14,24),(15,25)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,16),(2,18,5,19),(3,20,4,17),(6,21),(7,23,10,24),(8,25,9,22),(11,26),(12,28,15,29),(13,30,14,27)]])
G:=TransitiveGroup(30,51);
C2×S3×F5 is a maximal subgroup of
D60⋊3C4 C3⋊D4⋊F5
C2×S3×F5 is a maximal quotient of
C4⋊F5⋊3S3 Dic6⋊5F5 (C4×S3)⋊F5 D12.2F5 D12.F5 D60.C4 D15⋊M4(2) Dic6.F5 C5⋊C8⋊D6 D60⋊3C4 C22⋊F5.S3 C5⋊C8.D6 D15⋊C8⋊C2 D15⋊2M4(2) C3⋊D4⋊F5
Matrix representation of C2×S3×F5 ►in GL6(𝔽61)
60 | 0 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
60 | 60 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
60 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 60 | 60 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 60 | 60 | 60 | 60 |
G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,1,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,60,0,1,0,0,0,60,0,0,1,0,0,60,0,0,0],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,60,0,0,0,0,1,60,0,0,0,0,0,60,0,0,0,1,0,60] >;
C2×S3×F5 in GAP, Magma, Sage, TeX
C_2\times S_3\times F_5
% in TeX
G:=Group("C2xS3xF5");
// GroupNames label
G:=SmallGroup(240,195);
// by ID
G=gap.SmallGroup(240,195);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,48,490,3461,887]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations
Export