Extensions 1→N→G→Q→1 with N=C2×C30 and Q=C4

Direct product G=N×Q with N=C2×C30 and Q=C4
dρLabelID
C22×C60240C2^2xC60240,185

Semidirect products G=N:Q with N=C2×C30 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C30)⋊1C4 = D10.D6φ: C4/C1C4 ⊆ Aut C2×C30604(C2xC30):1C4240,124
(C2×C30)⋊2C4 = C22×C3⋊F5φ: C4/C1C4 ⊆ Aut C2×C3060(C2xC30):2C4240,201
(C2×C30)⋊3C4 = C3×C22⋊F5φ: C4/C1C4 ⊆ Aut C2×C30604(C2xC30):3C4240,117
(C2×C30)⋊4C4 = C2×C6×F5φ: C4/C1C4 ⊆ Aut C2×C3060(C2xC30):4C4240,200
(C2×C30)⋊5C4 = C15×C22⋊C4φ: C4/C2C2 ⊆ Aut C2×C30120(C2xC30):5C4240,82
(C2×C30)⋊6C4 = C30.38D4φ: C4/C2C2 ⊆ Aut C2×C30120(C2xC30):6C4240,80
(C2×C30)⋊7C4 = C22×Dic15φ: C4/C2C2 ⊆ Aut C2×C30240(C2xC30):7C4240,183
(C2×C30)⋊8C4 = C3×C23.D5φ: C4/C2C2 ⊆ Aut C2×C30120(C2xC30):8C4240,48
(C2×C30)⋊9C4 = C2×C6×Dic5φ: C4/C2C2 ⊆ Aut C2×C30240(C2xC30):9C4240,163
(C2×C30)⋊10C4 = C5×C6.D4φ: C4/C2C2 ⊆ Aut C2×C30120(C2xC30):10C4240,64
(C2×C30)⋊11C4 = Dic3×C2×C10φ: C4/C2C2 ⊆ Aut C2×C30240(C2xC30):11C4240,173

Non-split extensions G=N.Q with N=C2×C30 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C2×C30).1C4 = C2×C15⋊C8φ: C4/C1C4 ⊆ Aut C2×C30240(C2xC30).1C4240,122
(C2×C30).2C4 = C158M4(2)φ: C4/C1C4 ⊆ Aut C2×C301204(C2xC30).2C4240,123
(C2×C30).3C4 = C6×C5⋊C8φ: C4/C1C4 ⊆ Aut C2×C30240(C2xC30).3C4240,115
(C2×C30).4C4 = C3×C22.F5φ: C4/C1C4 ⊆ Aut C2×C301204(C2xC30).4C4240,116
(C2×C30).5C4 = C15×M4(2)φ: C4/C2C2 ⊆ Aut C2×C301202(C2xC30).5C4240,85
(C2×C30).6C4 = C2×C153C8φ: C4/C2C2 ⊆ Aut C2×C30240(C2xC30).6C4240,70
(C2×C30).7C4 = C60.7C4φ: C4/C2C2 ⊆ Aut C2×C301202(C2xC30).7C4240,71
(C2×C30).8C4 = C6×C52C8φ: C4/C2C2 ⊆ Aut C2×C30240(C2xC30).8C4240,38
(C2×C30).9C4 = C3×C4.Dic5φ: C4/C2C2 ⊆ Aut C2×C301202(C2xC30).9C4240,39
(C2×C30).10C4 = C10×C3⋊C8φ: C4/C2C2 ⊆ Aut C2×C30240(C2xC30).10C4240,54
(C2×C30).11C4 = C5×C4.Dic3φ: C4/C2C2 ⊆ Aut C2×C301202(C2xC30).11C4240,55

׿
×
𝔽