metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C60.7C4, C4.Dic15, C4.15D30, C20.50D6, C12.51D10, C15⋊13M4(2), C20.4Dic3, C12.1Dic5, C22.Dic15, C60.57C22, C15⋊3C8⋊5C2, (C2×C20).5S3, (C2×C30).7C4, (C2×C60).7C2, (C2×C12).5D5, (C2×C4).2D15, C30.51(C2×C4), C5⋊4(C4.Dic3), C3⋊2(C4.Dic5), (C2×C6).3Dic5, C6.7(C2×Dic5), (C2×C10).5Dic3, C2.3(C2×Dic15), C10.14(C2×Dic3), SmallGroup(240,71)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C60.7C4
G = < a,b | a60=1, b4=a30, bab-1=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 110 46 65 31 80 16 95)(2 109 47 64 32 79 17 94)(3 108 48 63 33 78 18 93)(4 107 49 62 34 77 19 92)(5 106 50 61 35 76 20 91)(6 105 51 120 36 75 21 90)(7 104 52 119 37 74 22 89)(8 103 53 118 38 73 23 88)(9 102 54 117 39 72 24 87)(10 101 55 116 40 71 25 86)(11 100 56 115 41 70 26 85)(12 99 57 114 42 69 27 84)(13 98 58 113 43 68 28 83)(14 97 59 112 44 67 29 82)(15 96 60 111 45 66 30 81)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,110,46,65,31,80,16,95)(2,109,47,64,32,79,17,94)(3,108,48,63,33,78,18,93)(4,107,49,62,34,77,19,92)(5,106,50,61,35,76,20,91)(6,105,51,120,36,75,21,90)(7,104,52,119,37,74,22,89)(8,103,53,118,38,73,23,88)(9,102,54,117,39,72,24,87)(10,101,55,116,40,71,25,86)(11,100,56,115,41,70,26,85)(12,99,57,114,42,69,27,84)(13,98,58,113,43,68,28,83)(14,97,59,112,44,67,29,82)(15,96,60,111,45,66,30,81)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,110,46,65,31,80,16,95)(2,109,47,64,32,79,17,94)(3,108,48,63,33,78,18,93)(4,107,49,62,34,77,19,92)(5,106,50,61,35,76,20,91)(6,105,51,120,36,75,21,90)(7,104,52,119,37,74,22,89)(8,103,53,118,38,73,23,88)(9,102,54,117,39,72,24,87)(10,101,55,116,40,71,25,86)(11,100,56,115,41,70,26,85)(12,99,57,114,42,69,27,84)(13,98,58,113,43,68,28,83)(14,97,59,112,44,67,29,82)(15,96,60,111,45,66,30,81) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,110,46,65,31,80,16,95),(2,109,47,64,32,79,17,94),(3,108,48,63,33,78,18,93),(4,107,49,62,34,77,19,92),(5,106,50,61,35,76,20,91),(6,105,51,120,36,75,21,90),(7,104,52,119,37,74,22,89),(8,103,53,118,38,73,23,88),(9,102,54,117,39,72,24,87),(10,101,55,116,40,71,25,86),(11,100,56,115,41,70,26,85),(12,99,57,114,42,69,27,84),(13,98,58,113,43,68,28,83),(14,97,59,112,44,67,29,82),(15,96,60,111,45,66,30,81)]])
C60.7C4 is a maximal subgroup of
C60.28D4 C20.5D12 C12.6D20 C60.54D4 C60.97D4 C60.99D4 C60.105D4 C12.59D20 D60⋊7C4 C4.18D60 C60.210D4 M4(2)⋊D15 C4.D60 C60.8D4 C60.10D4 Q8⋊3Dic15 D5×C4.Dic3 D20.3Dic3 D12.2Dic5 S3×C4.Dic5 C60.36D4 D20⋊21D6 D20.37D6 D12.37D10 D60.6C4 M4(2)×D15 D4.D30 Q8.11D30 D4.Dic15 D4⋊D30 D4.9D30
C60.7C4 is a maximal quotient of
C42.D15 C60⋊5C8 C60.212D4
66 conjugacy classes
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 5A | 5B | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 12A | 12B | 12C | 12D | 15A | 15B | 15C | 15D | 20A | ··· | 20H | 30A | ··· | 30L | 60A | ··· | 60P |
order | 1 | 2 | 2 | 3 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 30 | 30 | 30 | 30 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | - | + | - | - | + | - | + | - | + | - | ||||||
image | C1 | C2 | C2 | C4 | C4 | S3 | D5 | Dic3 | D6 | Dic3 | M4(2) | Dic5 | D10 | Dic5 | D15 | C4.Dic3 | Dic15 | D30 | Dic15 | C4.Dic5 | C60.7C4 |
kernel | C60.7C4 | C15⋊3C8 | C2×C60 | C60 | C2×C30 | C2×C20 | C2×C12 | C20 | C20 | C2×C10 | C15 | C12 | C12 | C2×C6 | C2×C4 | C5 | C4 | C4 | C22 | C3 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 16 |
Matrix representation of C60.7C4 ►in GL2(𝔽241) generated by
9 | 0 |
0 | 134 |
0 | 1 |
177 | 0 |
G:=sub<GL(2,GF(241))| [9,0,0,134],[0,177,1,0] >;
C60.7C4 in GAP, Magma, Sage, TeX
C_{60}._7C_4
% in TeX
G:=Group("C60.7C4");
// GroupNames label
G:=SmallGroup(240,71);
// by ID
G=gap.SmallGroup(240,71);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,24,121,50,964,6917]);
// Polycyclic
G:=Group<a,b|a^60=1,b^4=a^30,b*a*b^-1=a^-1>;
// generators/relations
Export