Extensions 1→N→G→Q→1 with N=C3×Dic10 and Q=C2

Direct product G=N×Q with N=C3×Dic10 and Q=C2
dρLabelID
C6×Dic10240C6xDic10240,155

Semidirect products G=N:Q with N=C3×Dic10 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic10)⋊1C2 = C15⋊SD16φ: C2/C1C2 ⊆ Out C3×Dic101204+(C3xDic10):1C2240,19
(C3×Dic10)⋊2C2 = S3×Dic10φ: C2/C1C2 ⊆ Out C3×Dic101204-(C3xDic10):2C2240,128
(C3×Dic10)⋊3C2 = D60⋊C2φ: C2/C1C2 ⊆ Out C3×Dic101204+(C3xDic10):3C2240,130
(C3×Dic10)⋊4C2 = C20.D6φ: C2/C1C2 ⊆ Out C3×Dic101204(C3xDic10):4C2240,17
(C3×Dic10)⋊5C2 = D12⋊D5φ: C2/C1C2 ⊆ Out C3×Dic101204(C3xDic10):5C2240,129
(C3×Dic10)⋊6C2 = D15⋊Q8φ: C2/C1C2 ⊆ Out C3×Dic101204(C3xDic10):6C2240,131
(C3×Dic10)⋊7C2 = C3×C40⋊C2φ: C2/C1C2 ⊆ Out C3×Dic101202(C3xDic10):7C2240,35
(C3×Dic10)⋊8C2 = C3×D4.D5φ: C2/C1C2 ⊆ Out C3×Dic101204(C3xDic10):8C2240,45
(C3×Dic10)⋊9C2 = C3×D42D5φ: C2/C1C2 ⊆ Out C3×Dic101204(C3xDic10):9C2240,160
(C3×Dic10)⋊10C2 = C3×Q8×D5φ: C2/C1C2 ⊆ Out C3×Dic101204(C3xDic10):10C2240,161
(C3×Dic10)⋊11C2 = C3×C4○D20φ: trivial image1202(C3xDic10):11C2240,158

Non-split extensions G=N.Q with N=C3×Dic10 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic10).1C2 = C3⋊Dic20φ: C2/C1C2 ⊆ Out C3×Dic102404-(C3xDic10).1C2240,23
(C3×Dic10).2C2 = C15⋊Q16φ: C2/C1C2 ⊆ Out C3×Dic102404(C3xDic10).2C2240,22
(C3×Dic10).3C2 = C3×Dic20φ: C2/C1C2 ⊆ Out C3×Dic102402(C3xDic10).3C2240,37
(C3×Dic10).4C2 = C3×C5⋊Q16φ: C2/C1C2 ⊆ Out C3×Dic102404(C3xDic10).4C2240,47

׿
×
𝔽