Extensions 1→N→G→Q→1 with N=C3xDic10 and Q=C2

Direct product G=NxQ with N=C3xDic10 and Q=C2
dρLabelID
C6xDic10240C6xDic10240,155

Semidirect products G=N:Q with N=C3xDic10 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xDic10):1C2 = C15:SD16φ: C2/C1C2 ⊆ Out C3xDic101204+(C3xDic10):1C2240,19
(C3xDic10):2C2 = S3xDic10φ: C2/C1C2 ⊆ Out C3xDic101204-(C3xDic10):2C2240,128
(C3xDic10):3C2 = D60:C2φ: C2/C1C2 ⊆ Out C3xDic101204+(C3xDic10):3C2240,130
(C3xDic10):4C2 = C20.D6φ: C2/C1C2 ⊆ Out C3xDic101204(C3xDic10):4C2240,17
(C3xDic10):5C2 = D12:D5φ: C2/C1C2 ⊆ Out C3xDic101204(C3xDic10):5C2240,129
(C3xDic10):6C2 = D15:Q8φ: C2/C1C2 ⊆ Out C3xDic101204(C3xDic10):6C2240,131
(C3xDic10):7C2 = C3xC40:C2φ: C2/C1C2 ⊆ Out C3xDic101202(C3xDic10):7C2240,35
(C3xDic10):8C2 = C3xD4.D5φ: C2/C1C2 ⊆ Out C3xDic101204(C3xDic10):8C2240,45
(C3xDic10):9C2 = C3xD4:2D5φ: C2/C1C2 ⊆ Out C3xDic101204(C3xDic10):9C2240,160
(C3xDic10):10C2 = C3xQ8xD5φ: C2/C1C2 ⊆ Out C3xDic101204(C3xDic10):10C2240,161
(C3xDic10):11C2 = C3xC4oD20φ: trivial image1202(C3xDic10):11C2240,158

Non-split extensions G=N.Q with N=C3xDic10 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xDic10).1C2 = C3:Dic20φ: C2/C1C2 ⊆ Out C3xDic102404-(C3xDic10).1C2240,23
(C3xDic10).2C2 = C15:Q16φ: C2/C1C2 ⊆ Out C3xDic102404(C3xDic10).2C2240,22
(C3xDic10).3C2 = C3xDic20φ: C2/C1C2 ⊆ Out C3xDic102402(C3xDic10).3C2240,37
(C3xDic10).4C2 = C3xC5:Q16φ: C2/C1C2 ⊆ Out C3xDic102404(C3xDic10).4C2240,47

׿
x
:
Z
F
o
wr
Q
<