Copied to
clipboard

G = C15⋊Q16order 240 = 24·3·5

1st semidirect product of C15 and Q16 acting via Q16/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C151Q16, C20.7D6, C30.10D4, C12.7D10, Dic6.2D5, C60.25C22, Dic10.2S3, C4.18(S3×D5), C32(C5⋊Q16), C52(C3⋊Q16), C153C8.2C2, C6.10(C5⋊D4), C2.7(C15⋊D4), (C5×Dic6).2C2, C10.10(C3⋊D4), (C3×Dic10).2C2, SmallGroup(240,22)

Series: Derived Chief Lower central Upper central

C1C60 — C15⋊Q16
C1C5C15C30C60C3×Dic10 — C15⋊Q16
C15C30C60 — C15⋊Q16
C1C2C4

Generators and relations for C15⋊Q16
 G = < a,b,c | a15=b8=1, c2=b4, bab-1=a-1, cac-1=a11, cbc-1=b-1 >

6C4
10C4
3Q8
5Q8
15C8
2Dic3
10C12
2Dic5
6C20
15Q16
5C3×Q8
5C3⋊C8
3C52C8
3C5×Q8
2C5×Dic3
2C3×Dic5
5C3⋊Q16
3C5⋊Q16

Character table of C15⋊Q16

 class 1234A4B4C5A5B68A8B10A10B12A12B12C15A15B20A20B20C20D20E20F30A30B60A60B60C60D
 size 1122122022230302242020444412121212444444
ρ1111111111111111111111111111111    trivial
ρ21111-1-111111111-1-11111-1-1-1-1111111    linear of order 2
ρ31111-11111-1-1111111111-1-1-1-1111111    linear of order 2
ρ411111-1111-1-1111-1-111111111111111    linear of order 2
ρ5222-2002220022-20022-2-2000022-2-2-2-2    orthogonal lifted from D4
ρ622-120222-10022-1-1-1-1-1220000-1-1-1-1-1-1    orthogonal lifted from S3
ρ722-120-222-10022-111-1-1220000-1-1-1-1-1-1    orthogonal lifted from D6
ρ82222-20-1-5/2-1+5/2200-1+5/2-1-5/2200-1-5/2-1+5/2-1-5/2-1+5/21+5/21+5/21-5/21-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D10
ρ92222-20-1+5/2-1-5/2200-1-5/2-1+5/2200-1+5/2-1-5/2-1+5/2-1-5/21-5/21-5/21+5/21+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D10
ρ10222220-1+5/2-1-5/2200-1-5/2-1+5/2200-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ11222220-1-5/2-1+5/2200-1+5/2-1-5/2200-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ122-2200022-2-22-2-200022000000-2-20000    symplectic lifted from Q16, Schur index 2
ρ132-2200022-22-2-2-200022000000-2-20000    symplectic lifted from Q16, Schur index 2
ρ1422-1-20022-100221--3-3-1-1-2-20000-1-11111    complex lifted from C3⋊D4
ρ15222-200-1+5/2-1-5/2200-1-5/2-1+5/2-200-1+5/2-1-5/21-5/21+5/2ζ545545ζ53525352-1+5/2-1-5/21-5/21+5/21+5/21-5/2    complex lifted from C5⋊D4
ρ1622-1-20022-100221-3--3-1-1-2-20000-1-11111    complex lifted from C3⋊D4
ρ17222-200-1+5/2-1-5/2200-1-5/2-1+5/2-200-1+5/2-1-5/21-5/21+5/2545ζ5455352ζ5352-1+5/2-1-5/21-5/21+5/21+5/21-5/2    complex lifted from C5⋊D4
ρ18222-200-1-5/2-1+5/2200-1+5/2-1-5/2-200-1-5/2-1+5/21+5/21-5/2ζ53525352545ζ545-1-5/2-1+5/21+5/21-5/21-5/21+5/2    complex lifted from C5⋊D4
ρ19222-200-1-5/2-1+5/2200-1+5/2-1-5/2-200-1-5/2-1+5/21+5/21-5/25352ζ5352ζ545545-1-5/2-1+5/21+5/21-5/21-5/21+5/2    complex lifted from C5⋊D4
ρ2044-2400-1+5-1-5-200-1-5-1+5-2001-5/21+5/2-1+5-1-500001-5/21+5/21-5/21+5/21+5/21-5/2    orthogonal lifted from S3×D5
ρ2144-2400-1-5-1+5-200-1+5-1-5-2001+5/21-5/2-1-5-1+500001+5/21-5/21+5/21-5/21-5/21+5/2    orthogonal lifted from S3×D5
ρ224-4-200044200-4-4000-2-2000000220000    symplectic lifted from C3⋊Q16, Schur index 2
ρ2344-2-400-1-5-1+5-200-1+5-1-52001+5/21-5/21+51-500001+5/21-5/2-1-5/2-1+5/2-1+5/2-1-5/2    symplectic lifted from C15⋊D4, Schur index 2
ρ244-44000-1+5-1-5-4001+51-5000-1+5-1-50000001-51+50000    symplectic lifted from C5⋊Q16, Schur index 2
ρ2544-2-400-1+5-1-5-200-1-5-1+52001-5/21+5/21-51+500001-5/21+5/2-1+5/2-1-5/2-1-5/2-1+5/2    symplectic lifted from C15⋊D4, Schur index 2
ρ264-44000-1-5-1+5-4001-51+5000-1-5-1+50000001+51-50000    symplectic lifted from C5⋊Q16, Schur index 2
ρ274-4-2000-1+5-1-52001+51-50001-5/21+5/2000000-1+5/2-1-5/2-2ζ43ζ3ζ54+2ζ43ζ3ζ543ζ5443ζ543ζ3ζ53-2ζ43ζ3ζ5243ζ5343ζ524ζ3ζ53-2ζ4ζ3ζ524ζ534ζ52-2ζ4ζ3ζ54+2ζ4ζ3ζ54ζ544ζ5    complex faithful
ρ284-4-2000-1-5-1+52001-51+50001+5/21-5/2000000-1-5/2-1+5/243ζ3ζ53-2ζ43ζ3ζ5243ζ5343ζ52-2ζ4ζ3ζ54+2ζ4ζ3ζ54ζ544ζ5-2ζ43ζ3ζ54+2ζ43ζ3ζ543ζ5443ζ54ζ3ζ53-2ζ4ζ3ζ524ζ534ζ52    complex faithful
ρ294-4-2000-1+5-1-52001+51-50001-5/21+5/2000000-1+5/2-1-5/2-2ζ4ζ3ζ54+2ζ4ζ3ζ54ζ544ζ54ζ3ζ53-2ζ4ζ3ζ524ζ534ζ5243ζ3ζ53-2ζ43ζ3ζ5243ζ5343ζ52-2ζ43ζ3ζ54+2ζ43ζ3ζ543ζ5443ζ5    complex faithful
ρ304-4-2000-1-5-1+52001-51+50001+5/21-5/2000000-1-5/2-1+5/24ζ3ζ53-2ζ4ζ3ζ524ζ534ζ52-2ζ43ζ3ζ54+2ζ43ζ3ζ543ζ5443ζ5-2ζ4ζ3ζ54+2ζ4ζ3ζ54ζ544ζ543ζ3ζ53-2ζ43ζ3ζ5243ζ5343ζ52    complex faithful

Smallest permutation representation of C15⋊Q16
Regular action on 240 points
Generators in S240
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165)(166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195)(196 197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224 225)(226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 211 35 200 16 228 54 192)(2 225 36 199 17 227 55 191)(3 224 37 198 18 226 56 190)(4 223 38 197 19 240 57 189)(5 222 39 196 20 239 58 188)(6 221 40 210 21 238 59 187)(7 220 41 209 22 237 60 186)(8 219 42 208 23 236 46 185)(9 218 43 207 24 235 47 184)(10 217 44 206 25 234 48 183)(11 216 45 205 26 233 49 182)(12 215 31 204 27 232 50 181)(13 214 32 203 28 231 51 195)(14 213 33 202 29 230 52 194)(15 212 34 201 30 229 53 193)(61 164 108 132 86 175 100 138)(62 163 109 131 87 174 101 137)(63 162 110 130 88 173 102 136)(64 161 111 129 89 172 103 150)(65 160 112 128 90 171 104 149)(66 159 113 127 76 170 105 148)(67 158 114 126 77 169 91 147)(68 157 115 125 78 168 92 146)(69 156 116 124 79 167 93 145)(70 155 117 123 80 166 94 144)(71 154 118 122 81 180 95 143)(72 153 119 121 82 179 96 142)(73 152 120 135 83 178 97 141)(74 151 106 134 84 177 98 140)(75 165 107 133 85 176 99 139)
(1 88 16 63)(2 84 17 74)(3 80 18 70)(4 76 19 66)(5 87 20 62)(6 83 21 73)(7 79 22 69)(8 90 23 65)(9 86 24 61)(10 82 25 72)(11 78 26 68)(12 89 27 64)(13 85 28 75)(14 81 29 71)(15 77 30 67)(31 111 50 103)(32 107 51 99)(33 118 52 95)(34 114 53 91)(35 110 54 102)(36 106 55 98)(37 117 56 94)(38 113 57 105)(39 109 58 101)(40 120 59 97)(41 116 60 93)(42 112 46 104)(43 108 47 100)(44 119 48 96)(45 115 49 92)(121 234 142 217)(122 230 143 213)(123 226 144 224)(124 237 145 220)(125 233 146 216)(126 229 147 212)(127 240 148 223)(128 236 149 219)(129 232 150 215)(130 228 136 211)(131 239 137 222)(132 235 138 218)(133 231 139 214)(134 227 140 225)(135 238 141 221)(151 191 177 199)(152 187 178 210)(153 183 179 206)(154 194 180 202)(155 190 166 198)(156 186 167 209)(157 182 168 205)(158 193 169 201)(159 189 170 197)(160 185 171 208)(161 181 172 204)(162 192 173 200)(163 188 174 196)(164 184 175 207)(165 195 176 203)

G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225)(226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,211,35,200,16,228,54,192)(2,225,36,199,17,227,55,191)(3,224,37,198,18,226,56,190)(4,223,38,197,19,240,57,189)(5,222,39,196,20,239,58,188)(6,221,40,210,21,238,59,187)(7,220,41,209,22,237,60,186)(8,219,42,208,23,236,46,185)(9,218,43,207,24,235,47,184)(10,217,44,206,25,234,48,183)(11,216,45,205,26,233,49,182)(12,215,31,204,27,232,50,181)(13,214,32,203,28,231,51,195)(14,213,33,202,29,230,52,194)(15,212,34,201,30,229,53,193)(61,164,108,132,86,175,100,138)(62,163,109,131,87,174,101,137)(63,162,110,130,88,173,102,136)(64,161,111,129,89,172,103,150)(65,160,112,128,90,171,104,149)(66,159,113,127,76,170,105,148)(67,158,114,126,77,169,91,147)(68,157,115,125,78,168,92,146)(69,156,116,124,79,167,93,145)(70,155,117,123,80,166,94,144)(71,154,118,122,81,180,95,143)(72,153,119,121,82,179,96,142)(73,152,120,135,83,178,97,141)(74,151,106,134,84,177,98,140)(75,165,107,133,85,176,99,139), (1,88,16,63)(2,84,17,74)(3,80,18,70)(4,76,19,66)(5,87,20,62)(6,83,21,73)(7,79,22,69)(8,90,23,65)(9,86,24,61)(10,82,25,72)(11,78,26,68)(12,89,27,64)(13,85,28,75)(14,81,29,71)(15,77,30,67)(31,111,50,103)(32,107,51,99)(33,118,52,95)(34,114,53,91)(35,110,54,102)(36,106,55,98)(37,117,56,94)(38,113,57,105)(39,109,58,101)(40,120,59,97)(41,116,60,93)(42,112,46,104)(43,108,47,100)(44,119,48,96)(45,115,49,92)(121,234,142,217)(122,230,143,213)(123,226,144,224)(124,237,145,220)(125,233,146,216)(126,229,147,212)(127,240,148,223)(128,236,149,219)(129,232,150,215)(130,228,136,211)(131,239,137,222)(132,235,138,218)(133,231,139,214)(134,227,140,225)(135,238,141,221)(151,191,177,199)(152,187,178,210)(153,183,179,206)(154,194,180,202)(155,190,166,198)(156,186,167,209)(157,182,168,205)(158,193,169,201)(159,189,170,197)(160,185,171,208)(161,181,172,204)(162,192,173,200)(163,188,174,196)(164,184,175,207)(165,195,176,203)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225)(226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,211,35,200,16,228,54,192)(2,225,36,199,17,227,55,191)(3,224,37,198,18,226,56,190)(4,223,38,197,19,240,57,189)(5,222,39,196,20,239,58,188)(6,221,40,210,21,238,59,187)(7,220,41,209,22,237,60,186)(8,219,42,208,23,236,46,185)(9,218,43,207,24,235,47,184)(10,217,44,206,25,234,48,183)(11,216,45,205,26,233,49,182)(12,215,31,204,27,232,50,181)(13,214,32,203,28,231,51,195)(14,213,33,202,29,230,52,194)(15,212,34,201,30,229,53,193)(61,164,108,132,86,175,100,138)(62,163,109,131,87,174,101,137)(63,162,110,130,88,173,102,136)(64,161,111,129,89,172,103,150)(65,160,112,128,90,171,104,149)(66,159,113,127,76,170,105,148)(67,158,114,126,77,169,91,147)(68,157,115,125,78,168,92,146)(69,156,116,124,79,167,93,145)(70,155,117,123,80,166,94,144)(71,154,118,122,81,180,95,143)(72,153,119,121,82,179,96,142)(73,152,120,135,83,178,97,141)(74,151,106,134,84,177,98,140)(75,165,107,133,85,176,99,139), (1,88,16,63)(2,84,17,74)(3,80,18,70)(4,76,19,66)(5,87,20,62)(6,83,21,73)(7,79,22,69)(8,90,23,65)(9,86,24,61)(10,82,25,72)(11,78,26,68)(12,89,27,64)(13,85,28,75)(14,81,29,71)(15,77,30,67)(31,111,50,103)(32,107,51,99)(33,118,52,95)(34,114,53,91)(35,110,54,102)(36,106,55,98)(37,117,56,94)(38,113,57,105)(39,109,58,101)(40,120,59,97)(41,116,60,93)(42,112,46,104)(43,108,47,100)(44,119,48,96)(45,115,49,92)(121,234,142,217)(122,230,143,213)(123,226,144,224)(124,237,145,220)(125,233,146,216)(126,229,147,212)(127,240,148,223)(128,236,149,219)(129,232,150,215)(130,228,136,211)(131,239,137,222)(132,235,138,218)(133,231,139,214)(134,227,140,225)(135,238,141,221)(151,191,177,199)(152,187,178,210)(153,183,179,206)(154,194,180,202)(155,190,166,198)(156,186,167,209)(157,182,168,205)(158,193,169,201)(159,189,170,197)(160,185,171,208)(161,181,172,204)(162,192,173,200)(163,188,174,196)(164,184,175,207)(165,195,176,203) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165),(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195),(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225),(226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,211,35,200,16,228,54,192),(2,225,36,199,17,227,55,191),(3,224,37,198,18,226,56,190),(4,223,38,197,19,240,57,189),(5,222,39,196,20,239,58,188),(6,221,40,210,21,238,59,187),(7,220,41,209,22,237,60,186),(8,219,42,208,23,236,46,185),(9,218,43,207,24,235,47,184),(10,217,44,206,25,234,48,183),(11,216,45,205,26,233,49,182),(12,215,31,204,27,232,50,181),(13,214,32,203,28,231,51,195),(14,213,33,202,29,230,52,194),(15,212,34,201,30,229,53,193),(61,164,108,132,86,175,100,138),(62,163,109,131,87,174,101,137),(63,162,110,130,88,173,102,136),(64,161,111,129,89,172,103,150),(65,160,112,128,90,171,104,149),(66,159,113,127,76,170,105,148),(67,158,114,126,77,169,91,147),(68,157,115,125,78,168,92,146),(69,156,116,124,79,167,93,145),(70,155,117,123,80,166,94,144),(71,154,118,122,81,180,95,143),(72,153,119,121,82,179,96,142),(73,152,120,135,83,178,97,141),(74,151,106,134,84,177,98,140),(75,165,107,133,85,176,99,139)], [(1,88,16,63),(2,84,17,74),(3,80,18,70),(4,76,19,66),(5,87,20,62),(6,83,21,73),(7,79,22,69),(8,90,23,65),(9,86,24,61),(10,82,25,72),(11,78,26,68),(12,89,27,64),(13,85,28,75),(14,81,29,71),(15,77,30,67),(31,111,50,103),(32,107,51,99),(33,118,52,95),(34,114,53,91),(35,110,54,102),(36,106,55,98),(37,117,56,94),(38,113,57,105),(39,109,58,101),(40,120,59,97),(41,116,60,93),(42,112,46,104),(43,108,47,100),(44,119,48,96),(45,115,49,92),(121,234,142,217),(122,230,143,213),(123,226,144,224),(124,237,145,220),(125,233,146,216),(126,229,147,212),(127,240,148,223),(128,236,149,219),(129,232,150,215),(130,228,136,211),(131,239,137,222),(132,235,138,218),(133,231,139,214),(134,227,140,225),(135,238,141,221),(151,191,177,199),(152,187,178,210),(153,183,179,206),(154,194,180,202),(155,190,166,198),(156,186,167,209),(157,182,168,205),(158,193,169,201),(159,189,170,197),(160,185,171,208),(161,181,172,204),(162,192,173,200),(163,188,174,196),(164,184,175,207),(165,195,176,203)]])

C15⋊Q16 is a maximal subgroup of
Dic10.D6  Dic6.D10  D30.3D4  D30.4D4  D20.34D6  D20.37D6  D12.37D10  C60.8C23  C60.10C23  C60.16C23  C60.19C23  D5×C3⋊Q16  S3×C5⋊Q16  C60.39C23  C60.44C23
C15⋊Q16 is a maximal quotient of
C30.Q16  Dic6⋊Dic5  C30.20D8

Matrix representation of C15⋊Q16 in GL6(𝔽241)

100000
010000
001905100
0019024000
0000239192
0000641
,
02190000
112190000
001318000
0014711000
000013198
0000179110
,
25830000
1872160000
00240000
00024000
0000160117
00008481

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,190,190,0,0,0,0,51,240,0,0,0,0,0,0,239,64,0,0,0,0,192,1],[0,11,0,0,0,0,219,219,0,0,0,0,0,0,131,147,0,0,0,0,80,110,0,0,0,0,0,0,131,179,0,0,0,0,98,110],[25,187,0,0,0,0,83,216,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,160,84,0,0,0,0,117,81] >;

C15⋊Q16 in GAP, Magma, Sage, TeX

C_{15}\rtimes Q_{16}
% in TeX

G:=Group("C15:Q16");
// GroupNames label

G:=SmallGroup(240,22);
// by ID

G=gap.SmallGroup(240,22);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,48,73,55,218,116,50,490,6917]);
// Polycyclic

G:=Group<a,b,c|a^15=b^8=1,c^2=b^4,b*a*b^-1=a^-1,c*a*c^-1=a^11,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C15⋊Q16 in TeX
Character table of C15⋊Q16 in TeX

׿
×
𝔽