Extensions 1→N→G→Q→1 with N=C3×D20 and Q=C2

Direct product G=N×Q with N=C3×D20 and Q=C2
dρLabelID
C6×D20120C6xD20240,157

Semidirect products G=N:Q with N=C3×D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D20)⋊1C2 = C3⋊D40φ: C2/C1C2 ⊆ Out C3×D201204+(C3xD20):1C2240,14
(C3×D20)⋊2C2 = D205S3φ: C2/C1C2 ⊆ Out C3×D201204-(C3xD20):2C2240,126
(C3×D20)⋊3C2 = S3×D20φ: C2/C1C2 ⊆ Out C3×D20604+(C3xD20):3C2240,137
(C3×D20)⋊4C2 = C15⋊D8φ: C2/C1C2 ⊆ Out C3×D201204(C3xD20):4C2240,13
(C3×D20)⋊5C2 = D20⋊S3φ: C2/C1C2 ⊆ Out C3×D201204(C3xD20):5C2240,127
(C3×D20)⋊6C2 = C20⋊D6φ: C2/C1C2 ⊆ Out C3×D20604(C3xD20):6C2240,138
(C3×D20)⋊7C2 = C3×D40φ: C2/C1C2 ⊆ Out C3×D201202(C3xD20):7C2240,36
(C3×D20)⋊8C2 = C3×D4⋊D5φ: C2/C1C2 ⊆ Out C3×D201204(C3xD20):8C2240,44
(C3×D20)⋊9C2 = C3×D4×D5φ: C2/C1C2 ⊆ Out C3×D20604(C3xD20):9C2240,159
(C3×D20)⋊10C2 = C3×Q82D5φ: C2/C1C2 ⊆ Out C3×D201204(C3xD20):10C2240,162
(C3×D20)⋊11C2 = C3×C4○D20φ: trivial image1202(C3xD20):11C2240,158

Non-split extensions G=N.Q with N=C3×D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D20).1C2 = C6.D20φ: C2/C1C2 ⊆ Out C3×D201204-(C3xD20).1C2240,18
(C3×D20).2C2 = C30.D4φ: C2/C1C2 ⊆ Out C3×D201204(C3xD20).2C2240,16
(C3×D20).3C2 = C3×C40⋊C2φ: C2/C1C2 ⊆ Out C3×D201202(C3xD20).3C2240,35
(C3×D20).4C2 = C3×Q8⋊D5φ: C2/C1C2 ⊆ Out C3×D201204(C3xD20).4C2240,46

׿
×
𝔽