Copied to
clipboard

G = C3xD20order 120 = 23·3·5

Direct product of C3 and D20

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C3xD20, C15:5D4, C20:1C6, C60:3C2, C12:3D5, D10:1C6, C6.15D10, C30.15C22, C4:(C3xD5), C5:1(C3xD4), (C6xD5):4C2, C2.4(C6xD5), C10.3(C2xC6), SmallGroup(120,18)

Series: Derived Chief Lower central Upper central

C1C10 — C3xD20
C1C5C10C30C6xD5 — C3xD20
C5C10 — C3xD20
C1C6C12

Generators and relations for C3xD20
 G = < a,b,c | a3=b20=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 96 in 32 conjugacy classes, 18 normal (14 characteristic)
Quotients: C1, C2, C3, C22, C6, D4, D5, C2xC6, D10, C3xD4, C3xD5, D20, C6xD5, C3xD20
10C2
10C2
5C22
5C22
10C6
10C6
2D5
2D5
5D4
5C2xC6
5C2xC6
2C3xD5
2C3xD5
5C3xD4

Smallest permutation representation of C3xD20
On 60 points
Generators in S60
(1 25 47)(2 26 48)(3 27 49)(4 28 50)(5 29 51)(6 30 52)(7 31 53)(8 32 54)(9 33 55)(10 34 56)(11 35 57)(12 36 58)(13 37 59)(14 38 60)(15 39 41)(16 40 42)(17 21 43)(18 22 44)(19 23 45)(20 24 46)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 28)(22 27)(23 26)(24 25)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)(53 60)(54 59)(55 58)(56 57)

G:=sub<Sym(60)| (1,25,47)(2,26,48)(3,27,49)(4,28,50)(5,29,51)(6,30,52)(7,31,53)(8,32,54)(9,33,55)(10,34,56)(11,35,57)(12,36,58)(13,37,59)(14,38,60)(15,39,41)(16,40,42)(17,21,43)(18,22,44)(19,23,45)(20,24,46), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,28)(22,27)(23,26)(24,25)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57)>;

G:=Group( (1,25,47)(2,26,48)(3,27,49)(4,28,50)(5,29,51)(6,30,52)(7,31,53)(8,32,54)(9,33,55)(10,34,56)(11,35,57)(12,36,58)(13,37,59)(14,38,60)(15,39,41)(16,40,42)(17,21,43)(18,22,44)(19,23,45)(20,24,46), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,28)(22,27)(23,26)(24,25)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57) );

G=PermutationGroup([[(1,25,47),(2,26,48),(3,27,49),(4,28,50),(5,29,51),(6,30,52),(7,31,53),(8,32,54),(9,33,55),(10,34,56),(11,35,57),(12,36,58),(13,37,59),(14,38,60),(15,39,41),(16,40,42),(17,21,43),(18,22,44),(19,23,45),(20,24,46)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,28),(22,27),(23,26),(24,25),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47),(53,60),(54,59),(55,58),(56,57)]])

C3xD20 is a maximal subgroup of
C15:D8  C3:D40  C30.D4  C6.D20  D20:5S3  D20:S3  C20:D6  C3xD4xD5  D20.A4

39 conjugacy classes

class 1 2A2B2C3A3B 4 5A5B6A6B6C6D6E6F10A10B12A12B15A15B15C15D20A20B20C20D30A30B30C30D60A···60H
order1222334556666661010121215151515202020203030303060···60
size11101011222111010101022222222222222222···2

39 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C3C6C6D4D5D10C3xD4C3xD5D20C6xD5C3xD20
kernelC3xD20C60C6xD5D20C20D10C15C12C6C5C4C3C2C1
# reps11222412224448

Matrix representation of C3xD20 in GL2(F19) generated by

110
011
,
67
80
,
07
110
G:=sub<GL(2,GF(19))| [11,0,0,11],[6,8,7,0],[0,11,7,0] >;

C3xD20 in GAP, Magma, Sage, TeX

C_3\times D_{20}
% in TeX

G:=Group("C3xD20");
// GroupNames label

G:=SmallGroup(120,18);
// by ID

G=gap.SmallGroup(120,18);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-5,141,66,2404]);
// Polycyclic

G:=Group<a,b,c|a^3=b^20=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3xD20 in TeX

׿
x
:
Z
F
o
wr
Q
<