Extensions 1→N→G→Q→1 with N=C3×C5⋊D4 and Q=C2

Direct product G=N×Q with N=C3×C5⋊D4 and Q=C2
dρLabelID
C6×C5⋊D4120C6xC5:D4240,164

Semidirect products G=N:Q with N=C3×C5⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C5⋊D4)⋊1C2 = Dic5.D6φ: C2/C1C2 ⊆ Out C3×C5⋊D41204(C3xC5:D4):1C2240,140
(C3×C5⋊D4)⋊2C2 = C30.C23φ: C2/C1C2 ⊆ Out C3×C5⋊D41204-(C3xC5:D4):2C2240,141
(C3×C5⋊D4)⋊3C2 = S3×C5⋊D4φ: C2/C1C2 ⊆ Out C3×C5⋊D4604(C3xC5:D4):3C2240,150
(C3×C5⋊D4)⋊4C2 = D10⋊D6φ: C2/C1C2 ⊆ Out C3×C5⋊D4604+(C3xC5:D4):4C2240,151
(C3×C5⋊D4)⋊5C2 = C3×D4×D5φ: C2/C1C2 ⊆ Out C3×C5⋊D4604(C3xC5:D4):5C2240,159
(C3×C5⋊D4)⋊6C2 = C3×D42D5φ: C2/C1C2 ⊆ Out C3×C5⋊D41204(C3xC5:D4):6C2240,160
(C3×C5⋊D4)⋊7C2 = C3×C4○D20φ: trivial image1202(C3xC5:D4):7C2240,158


׿
×
𝔽