Copied to
clipboard

G = S3×C5⋊D4order 240 = 24·3·5

Direct product of S3 and C5⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×C5⋊D4, D67D10, D103D6, Dic51D6, D304C22, C30.26C23, Dic152C22, C55(S3×D4), C158(C2×D4), (C5×S3)⋊2D4, (C2×C10)⋊8D6, (C2×C6)⋊1D10, C157D46C2, C15⋊D46C2, C5⋊D125C2, C222(S3×D5), (C2×C30)⋊3C22, (S3×Dic5)⋊5C2, (C22×S3)⋊3D5, (C6×D5)⋊3C22, (S3×C10)⋊7C22, C6.26(C22×D5), C10.26(C22×S3), (C3×Dic5)⋊1C22, (C2×S3×D5)⋊5C2, C32(C2×C5⋊D4), (S3×C2×C10)⋊3C2, C2.26(C2×S3×D5), (C3×C5⋊D4)⋊3C2, SmallGroup(240,150)

Series: Derived Chief Lower central Upper central

C1C30 — S3×C5⋊D4
C1C5C15C30C6×D5C2×S3×D5 — S3×C5⋊D4
C15C30 — S3×C5⋊D4
C1C2C22

Generators and relations for S3×C5⋊D4
 G = < a,b,c,d,e | a3=b2=c5=d4=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 504 in 108 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, S3, C6, C6, C2×C4, D4, C23, D5, C10, C10, Dic3, C12, D6, D6, C2×C6, C2×C6, C15, C2×D4, Dic5, Dic5, D10, D10, C2×C10, C2×C10, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, C22×S3, C5×S3, C5×S3, C3×D5, D15, C30, C30, C2×Dic5, C5⋊D4, C5⋊D4, C22×D5, C22×C10, S3×D4, C3×Dic5, Dic15, S3×D5, C6×D5, S3×C10, S3×C10, D30, C2×C30, C2×C5⋊D4, S3×Dic5, C15⋊D4, C5⋊D12, C3×C5⋊D4, C157D4, C2×S3×D5, S3×C2×C10, S3×C5⋊D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C22×S3, C5⋊D4, C22×D5, S3×D4, S3×D5, C2×C5⋊D4, C2×S3×D5, S3×C5⋊D4

Smallest permutation representation of S3×C5⋊D4
On 60 points
Generators in S60
(1 6 11)(2 7 12)(3 8 13)(4 9 14)(5 10 15)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)
(6 11)(7 12)(8 13)(9 14)(10 15)(21 26)(22 27)(23 28)(24 29)(25 30)(36 41)(37 42)(38 43)(39 44)(40 45)(51 56)(52 57)(53 58)(54 59)(55 60)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 31 16 46)(2 35 17 50)(3 34 18 49)(4 33 19 48)(5 32 20 47)(6 36 21 51)(7 40 22 55)(8 39 23 54)(9 38 24 53)(10 37 25 52)(11 41 26 56)(12 45 27 60)(13 44 28 59)(14 43 29 58)(15 42 30 57)
(2 5)(3 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(31 46)(32 50)(33 49)(34 48)(35 47)(36 51)(37 55)(38 54)(39 53)(40 52)(41 56)(42 60)(43 59)(44 58)(45 57)

G:=sub<Sym(60)| (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,31,16,46)(2,35,17,50)(3,34,18,49)(4,33,19,48)(5,32,20,47)(6,36,21,51)(7,40,22,55)(8,39,23,54)(9,38,24,53)(10,37,25,52)(11,41,26,56)(12,45,27,60)(13,44,28,59)(14,43,29,58)(15,42,30,57), (2,5)(3,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(31,46)(32,50)(33,49)(34,48)(35,47)(36,51)(37,55)(38,54)(39,53)(40,52)(41,56)(42,60)(43,59)(44,58)(45,57)>;

G:=Group( (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,31,16,46)(2,35,17,50)(3,34,18,49)(4,33,19,48)(5,32,20,47)(6,36,21,51)(7,40,22,55)(8,39,23,54)(9,38,24,53)(10,37,25,52)(11,41,26,56)(12,45,27,60)(13,44,28,59)(14,43,29,58)(15,42,30,57), (2,5)(3,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(31,46)(32,50)(33,49)(34,48)(35,47)(36,51)(37,55)(38,54)(39,53)(40,52)(41,56)(42,60)(43,59)(44,58)(45,57) );

G=PermutationGroup([[(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60)], [(6,11),(7,12),(8,13),(9,14),(10,15),(21,26),(22,27),(23,28),(24,29),(25,30),(36,41),(37,42),(38,43),(39,44),(40,45),(51,56),(52,57),(53,58),(54,59),(55,60)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,31,16,46),(2,35,17,50),(3,34,18,49),(4,33,19,48),(5,32,20,47),(6,36,21,51),(7,40,22,55),(8,39,23,54),(9,38,24,53),(10,37,25,52),(11,41,26,56),(12,45,27,60),(13,44,28,59),(14,43,29,58),(15,42,30,57)], [(2,5),(3,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(31,46),(32,50),(33,49),(34,48),(35,47),(36,51),(37,55),(38,54),(39,53),(40,52),(41,56),(42,60),(43,59),(44,58),(45,57)]])

S3×C5⋊D4 is a maximal subgroup of
D2026D6  S3×D4×D5  D2013D6  D1214D10  C15⋊2+ 1+4
S3×C5⋊D4 is a maximal quotient of
Dic15⋊Q8  D6⋊Dic5⋊C2  D6⋊Dic10  Dic5⋊D12  D101Dic6  (C2×D12).D5  D303Q8  C1517(C4×D4)  C1522(C4×D4)  D10⋊C4⋊S3  Dic152D4  D6⋊D20  (C2×Dic6)⋊D5  D304D4  D60.C22  C60.10C23  D20.24D6  D2010D6  C60.19C23  D12.9D10  D12⋊D10  Dic10.26D6  D20.27D6  D20.28D6  Dic10.27D6  C60.44C23  C23.D5⋊S3  (C6×D5)⋊D4  (S3×C10).D4  C1528(C4×D4)  D307D4  Dic154D4  (S3×C10)⋊D4  Dic155D4  C15⋊C22≀C2  (C2×C6)⋊D20  (C2×C10)⋊11D12  (C2×C10)⋊8Dic6  D308D4

39 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B5A5B6A6B6C10A···10F10G···10N 12 15A15B30A···30F
order122222223445566610···1010···1012151530···30
size1123361030210302224202···26···620444···4

39 irreducible representations

dim111111112222222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D5D6D6D6D10D10C5⋊D4S3×D4S3×D5C2×S3×D5S3×C5⋊D4
kernelS3×C5⋊D4S3×Dic5C15⋊D4C5⋊D12C3×C5⋊D4C157D4C2×S3×D5S3×C2×C10C5⋊D4C5×S3C22×S3Dic5D10C2×C10D6C2×C6S3C5C22C2C1
# reps111111111221114281224

Matrix representation of S3×C5⋊D4 in GL4(𝔽61) generated by

1000
0100
00060
00160
,
1000
0100
0001
0010
,
06000
11700
0010
0001
,
222200
143900
0010
0001
,
174400
604400
0010
0001
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,60,60],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0],[0,1,0,0,60,17,0,0,0,0,1,0,0,0,0,1],[22,14,0,0,22,39,0,0,0,0,1,0,0,0,0,1],[17,60,0,0,44,44,0,0,0,0,1,0,0,0,0,1] >;

S3×C5⋊D4 in GAP, Magma, Sage, TeX

S_3\times C_5\rtimes D_4
% in TeX

G:=Group("S3xC5:D4");
// GroupNames label

G:=SmallGroup(240,150);
// by ID

G=gap.SmallGroup(240,150);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,218,490,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^5=d^4=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽