Extensions 1→N→G→Q→1 with N=C5×Dic6 and Q=C2

Direct product G=N×Q with N=C5×Dic6 and Q=C2
dρLabelID
C10×Dic6240C10xDic6240,165

Semidirect products G=N:Q with N=C5×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic6)⋊1C2 = Dic6⋊D5φ: C2/C1C2 ⊆ Out C5×Dic61204+(C5xDic6):1C2240,21
(C5×Dic6)⋊2C2 = D5×Dic6φ: C2/C1C2 ⊆ Out C5×Dic61204-(C5xDic6):2C2240,125
(C5×Dic6)⋊3C2 = C12.28D10φ: C2/C1C2 ⊆ Out C5×Dic61204+(C5xDic6):3C2240,134
(C5×Dic6)⋊4C2 = C30.D4φ: C2/C1C2 ⊆ Out C5×Dic61204(C5xDic6):4C2240,16
(C5×Dic6)⋊5C2 = D20⋊S3φ: C2/C1C2 ⊆ Out C5×Dic61204(C5xDic6):5C2240,127
(C5×Dic6)⋊6C2 = D15⋊Q8φ: C2/C1C2 ⊆ Out C5×Dic61204(C5xDic6):6C2240,131
(C5×Dic6)⋊7C2 = C5×C24⋊C2φ: C2/C1C2 ⊆ Out C5×Dic61202(C5xDic6):7C2240,51
(C5×Dic6)⋊8C2 = C5×D4.S3φ: C2/C1C2 ⊆ Out C5×Dic61204(C5xDic6):8C2240,61
(C5×Dic6)⋊9C2 = C5×D42S3φ: C2/C1C2 ⊆ Out C5×Dic61204(C5xDic6):9C2240,170
(C5×Dic6)⋊10C2 = C5×S3×Q8φ: C2/C1C2 ⊆ Out C5×Dic61204(C5xDic6):10C2240,171
(C5×Dic6)⋊11C2 = C5×C4○D12φ: trivial image1202(C5xDic6):11C2240,168

Non-split extensions G=N.Q with N=C5×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic6).1C2 = C5⋊Dic12φ: C2/C1C2 ⊆ Out C5×Dic62404-(C5xDic6).1C2240,24
(C5×Dic6).2C2 = C15⋊Q16φ: C2/C1C2 ⊆ Out C5×Dic62404(C5xDic6).2C2240,22
(C5×Dic6).3C2 = C5×Dic12φ: C2/C1C2 ⊆ Out C5×Dic62402(C5xDic6).3C2240,53
(C5×Dic6).4C2 = C5×C3⋊Q16φ: C2/C1C2 ⊆ Out C5×Dic62404(C5xDic6).4C2240,63

׿
×
𝔽