Extensions 1→N→G→Q→1 with N=C10xDic3 and Q=C2

Direct product G=NxQ with N=C10xDic3 and Q=C2
dρLabelID
Dic3xC2xC10240Dic3xC2xC10240,173

Semidirect products G=N:Q with N=C10xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10xDic3):1C2 = D10:Dic3φ: C2/C1C2 ⊆ Out C10xDic3120(C10xDic3):1C2240,26
(C10xDic3):2C2 = D30:4C4φ: C2/C1C2 ⊆ Out C10xDic3120(C10xDic3):2C2240,28
(C10xDic3):3C2 = C2xD5xDic3φ: C2/C1C2 ⊆ Out C10xDic3120(C10xDic3):3C2240,139
(C10xDic3):4C2 = Dic5.D6φ: C2/C1C2 ⊆ Out C10xDic31204(C10xDic3):4C2240,140
(C10xDic3):5C2 = C2xD30.C2φ: C2/C1C2 ⊆ Out C10xDic3120(C10xDic3):5C2240,144
(C10xDic3):6C2 = C2xC3:D20φ: C2/C1C2 ⊆ Out C10xDic3120(C10xDic3):6C2240,146
(C10xDic3):7C2 = C5xD6:C4φ: C2/C1C2 ⊆ Out C10xDic3120(C10xDic3):7C2240,59
(C10xDic3):8C2 = C5xC6.D4φ: C2/C1C2 ⊆ Out C10xDic3120(C10xDic3):8C2240,64
(C10xDic3):9C2 = C5xD4:2S3φ: C2/C1C2 ⊆ Out C10xDic31204(C10xDic3):9C2240,170
(C10xDic3):10C2 = C10xC3:D4φ: C2/C1C2 ⊆ Out C10xDic3120(C10xDic3):10C2240,174
(C10xDic3):11C2 = S3xC2xC20φ: trivial image120(C10xDic3):11C2240,166

Non-split extensions G=N.Q with N=C10xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10xDic3).1C2 = Dic3xDic5φ: C2/C1C2 ⊆ Out C10xDic3240(C10xDic3).1C2240,25
(C10xDic3).2C2 = C30.Q8φ: C2/C1C2 ⊆ Out C10xDic3240(C10xDic3).2C2240,29
(C10xDic3).3C2 = Dic15:5C4φ: C2/C1C2 ⊆ Out C10xDic3240(C10xDic3).3C2240,30
(C10xDic3).4C2 = C6.Dic10φ: C2/C1C2 ⊆ Out C10xDic3240(C10xDic3).4C2240,31
(C10xDic3).5C2 = C2xC15:Q8φ: C2/C1C2 ⊆ Out C10xDic3240(C10xDic3).5C2240,148
(C10xDic3).6C2 = C5xDic3:C4φ: C2/C1C2 ⊆ Out C10xDic3240(C10xDic3).6C2240,57
(C10xDic3).7C2 = C5xC4:Dic3φ: C2/C1C2 ⊆ Out C10xDic3240(C10xDic3).7C2240,58
(C10xDic3).8C2 = C10xDic6φ: C2/C1C2 ⊆ Out C10xDic3240(C10xDic3).8C2240,165
(C10xDic3).9C2 = Dic3xC20φ: trivial image240(C10xDic3).9C2240,56

׿
x
:
Z
F
o
wr
Q
<