Copied to
clipboard

G = C2xD5xDic3order 240 = 24·3·5

Direct product of C2, D5 and Dic3

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2xD5xDic3, D10.19D6, C30.15C23, Dic15:7C22, C6:3(C4xD5), C30:4(C2xC4), (C6xD5):2C4, C15:5(C22xC4), C10:2(C2xDic3), (C2xC6).12D10, (C2xC10).12D6, C5:2(C22xDic3), (C10xDic3):3C2, (C2xDic15):7C2, (C2xC30).9C22, (C22xD5).5S3, C22.11(S3xD5), C6.15(C22xD5), C10.15(C22xS3), (C5xDic3):5C22, (C6xD5).15C22, C3:4(C2xC4xD5), C2.2(C2xS3xD5), (D5xC2xC6).2C2, (C3xD5):3(C2xC4), SmallGroup(240,139)

Series: Derived Chief Lower central Upper central

C1C15 — C2xD5xDic3
C1C5C15C30C6xD5D5xDic3 — C2xD5xDic3
C15 — C2xD5xDic3
C1C22

Generators and relations for C2xD5xDic3
 G = < a,b,c,d,e | a2=b5=c2=d6=1, e2=d3, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 368 in 108 conjugacy classes, 56 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, C6, C6, C6, C2xC4, C23, D5, C10, C10, Dic3, Dic3, C2xC6, C2xC6, C15, C22xC4, Dic5, C20, D10, C2xC10, C2xDic3, C2xDic3, C22xC6, C3xD5, C30, C30, C4xD5, C2xDic5, C2xC20, C22xD5, C22xDic3, C5xDic3, Dic15, C6xD5, C2xC30, C2xC4xD5, D5xDic3, C10xDic3, C2xDic15, D5xC2xC6, C2xD5xDic3
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D5, Dic3, D6, C22xC4, D10, C2xDic3, C22xS3, C4xD5, C22xD5, C22xDic3, S3xD5, C2xC4xD5, D5xDic3, C2xS3xD5, C2xD5xDic3

Smallest permutation representation of C2xD5xDic3
On 120 points
Generators in S120
(1 58)(2 59)(3 60)(4 55)(5 56)(6 57)(7 112)(8 113)(9 114)(10 109)(11 110)(12 111)(13 108)(14 103)(15 104)(16 105)(17 106)(18 107)(19 98)(20 99)(21 100)(22 101)(23 102)(24 97)(25 94)(26 95)(27 96)(28 91)(29 92)(30 93)(31 72)(32 67)(33 68)(34 69)(35 70)(36 71)(37 62)(38 63)(39 64)(40 65)(41 66)(42 61)(43 84)(44 79)(45 80)(46 81)(47 82)(48 83)(49 74)(50 75)(51 76)(52 77)(53 78)(54 73)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)
(1 39 51 48 31)(2 40 52 43 32)(3 41 53 44 33)(4 42 54 45 34)(5 37 49 46 35)(6 38 50 47 36)(7 24 115 26 14)(8 19 116 27 15)(9 20 117 28 16)(10 21 118 29 17)(11 22 119 30 18)(12 23 120 25 13)(55 61 73 80 69)(56 62 74 81 70)(57 63 75 82 71)(58 64 76 83 72)(59 65 77 84 67)(60 66 78 79 68)(85 95 103 112 97)(86 96 104 113 98)(87 91 105 114 99)(88 92 106 109 100)(89 93 107 110 101)(90 94 108 111 102)
(1 69)(2 70)(3 71)(4 72)(5 67)(6 68)(7 92)(8 93)(9 94)(10 95)(11 96)(12 91)(13 105)(14 106)(15 107)(16 108)(17 103)(18 104)(19 89)(20 90)(21 85)(22 86)(23 87)(24 88)(25 114)(26 109)(27 110)(28 111)(29 112)(30 113)(31 55)(32 56)(33 57)(34 58)(35 59)(36 60)(37 84)(38 79)(39 80)(40 81)(41 82)(42 83)(43 62)(44 63)(45 64)(46 65)(47 66)(48 61)(49 77)(50 78)(51 73)(52 74)(53 75)(54 76)(97 118)(98 119)(99 120)(100 115)(101 116)(102 117)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)
(1 119 4 116)(2 118 5 115)(3 117 6 120)(7 43 10 46)(8 48 11 45)(9 47 12 44)(13 53 16 50)(14 52 17 49)(15 51 18 54)(19 31 22 34)(20 36 23 33)(21 35 24 32)(25 41 28 38)(26 40 29 37)(27 39 30 42)(55 86 58 89)(56 85 59 88)(57 90 60 87)(61 96 64 93)(62 95 65 92)(63 94 66 91)(67 100 70 97)(68 99 71 102)(69 98 72 101)(73 104 76 107)(74 103 77 106)(75 108 78 105)(79 114 82 111)(80 113 83 110)(81 112 84 109)

G:=sub<Sym(120)| (1,58)(2,59)(3,60)(4,55)(5,56)(6,57)(7,112)(8,113)(9,114)(10,109)(11,110)(12,111)(13,108)(14,103)(15,104)(16,105)(17,106)(18,107)(19,98)(20,99)(21,100)(22,101)(23,102)(24,97)(25,94)(26,95)(27,96)(28,91)(29,92)(30,93)(31,72)(32,67)(33,68)(34,69)(35,70)(36,71)(37,62)(38,63)(39,64)(40,65)(41,66)(42,61)(43,84)(44,79)(45,80)(46,81)(47,82)(48,83)(49,74)(50,75)(51,76)(52,77)(53,78)(54,73)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,39,51,48,31)(2,40,52,43,32)(3,41,53,44,33)(4,42,54,45,34)(5,37,49,46,35)(6,38,50,47,36)(7,24,115,26,14)(8,19,116,27,15)(9,20,117,28,16)(10,21,118,29,17)(11,22,119,30,18)(12,23,120,25,13)(55,61,73,80,69)(56,62,74,81,70)(57,63,75,82,71)(58,64,76,83,72)(59,65,77,84,67)(60,66,78,79,68)(85,95,103,112,97)(86,96,104,113,98)(87,91,105,114,99)(88,92,106,109,100)(89,93,107,110,101)(90,94,108,111,102), (1,69)(2,70)(3,71)(4,72)(5,67)(6,68)(7,92)(8,93)(9,94)(10,95)(11,96)(12,91)(13,105)(14,106)(15,107)(16,108)(17,103)(18,104)(19,89)(20,90)(21,85)(22,86)(23,87)(24,88)(25,114)(26,109)(27,110)(28,111)(29,112)(30,113)(31,55)(32,56)(33,57)(34,58)(35,59)(36,60)(37,84)(38,79)(39,80)(40,81)(41,82)(42,83)(43,62)(44,63)(45,64)(46,65)(47,66)(48,61)(49,77)(50,78)(51,73)(52,74)(53,75)(54,76)(97,118)(98,119)(99,120)(100,115)(101,116)(102,117), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,119,4,116)(2,118,5,115)(3,117,6,120)(7,43,10,46)(8,48,11,45)(9,47,12,44)(13,53,16,50)(14,52,17,49)(15,51,18,54)(19,31,22,34)(20,36,23,33)(21,35,24,32)(25,41,28,38)(26,40,29,37)(27,39,30,42)(55,86,58,89)(56,85,59,88)(57,90,60,87)(61,96,64,93)(62,95,65,92)(63,94,66,91)(67,100,70,97)(68,99,71,102)(69,98,72,101)(73,104,76,107)(74,103,77,106)(75,108,78,105)(79,114,82,111)(80,113,83,110)(81,112,84,109)>;

G:=Group( (1,58)(2,59)(3,60)(4,55)(5,56)(6,57)(7,112)(8,113)(9,114)(10,109)(11,110)(12,111)(13,108)(14,103)(15,104)(16,105)(17,106)(18,107)(19,98)(20,99)(21,100)(22,101)(23,102)(24,97)(25,94)(26,95)(27,96)(28,91)(29,92)(30,93)(31,72)(32,67)(33,68)(34,69)(35,70)(36,71)(37,62)(38,63)(39,64)(40,65)(41,66)(42,61)(43,84)(44,79)(45,80)(46,81)(47,82)(48,83)(49,74)(50,75)(51,76)(52,77)(53,78)(54,73)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,39,51,48,31)(2,40,52,43,32)(3,41,53,44,33)(4,42,54,45,34)(5,37,49,46,35)(6,38,50,47,36)(7,24,115,26,14)(8,19,116,27,15)(9,20,117,28,16)(10,21,118,29,17)(11,22,119,30,18)(12,23,120,25,13)(55,61,73,80,69)(56,62,74,81,70)(57,63,75,82,71)(58,64,76,83,72)(59,65,77,84,67)(60,66,78,79,68)(85,95,103,112,97)(86,96,104,113,98)(87,91,105,114,99)(88,92,106,109,100)(89,93,107,110,101)(90,94,108,111,102), (1,69)(2,70)(3,71)(4,72)(5,67)(6,68)(7,92)(8,93)(9,94)(10,95)(11,96)(12,91)(13,105)(14,106)(15,107)(16,108)(17,103)(18,104)(19,89)(20,90)(21,85)(22,86)(23,87)(24,88)(25,114)(26,109)(27,110)(28,111)(29,112)(30,113)(31,55)(32,56)(33,57)(34,58)(35,59)(36,60)(37,84)(38,79)(39,80)(40,81)(41,82)(42,83)(43,62)(44,63)(45,64)(46,65)(47,66)(48,61)(49,77)(50,78)(51,73)(52,74)(53,75)(54,76)(97,118)(98,119)(99,120)(100,115)(101,116)(102,117), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,119,4,116)(2,118,5,115)(3,117,6,120)(7,43,10,46)(8,48,11,45)(9,47,12,44)(13,53,16,50)(14,52,17,49)(15,51,18,54)(19,31,22,34)(20,36,23,33)(21,35,24,32)(25,41,28,38)(26,40,29,37)(27,39,30,42)(55,86,58,89)(56,85,59,88)(57,90,60,87)(61,96,64,93)(62,95,65,92)(63,94,66,91)(67,100,70,97)(68,99,71,102)(69,98,72,101)(73,104,76,107)(74,103,77,106)(75,108,78,105)(79,114,82,111)(80,113,83,110)(81,112,84,109) );

G=PermutationGroup([[(1,58),(2,59),(3,60),(4,55),(5,56),(6,57),(7,112),(8,113),(9,114),(10,109),(11,110),(12,111),(13,108),(14,103),(15,104),(16,105),(17,106),(18,107),(19,98),(20,99),(21,100),(22,101),(23,102),(24,97),(25,94),(26,95),(27,96),(28,91),(29,92),(30,93),(31,72),(32,67),(33,68),(34,69),(35,70),(36,71),(37,62),(38,63),(39,64),(40,65),(41,66),(42,61),(43,84),(44,79),(45,80),(46,81),(47,82),(48,83),(49,74),(50,75),(51,76),(52,77),(53,78),(54,73),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120)], [(1,39,51,48,31),(2,40,52,43,32),(3,41,53,44,33),(4,42,54,45,34),(5,37,49,46,35),(6,38,50,47,36),(7,24,115,26,14),(8,19,116,27,15),(9,20,117,28,16),(10,21,118,29,17),(11,22,119,30,18),(12,23,120,25,13),(55,61,73,80,69),(56,62,74,81,70),(57,63,75,82,71),(58,64,76,83,72),(59,65,77,84,67),(60,66,78,79,68),(85,95,103,112,97),(86,96,104,113,98),(87,91,105,114,99),(88,92,106,109,100),(89,93,107,110,101),(90,94,108,111,102)], [(1,69),(2,70),(3,71),(4,72),(5,67),(6,68),(7,92),(8,93),(9,94),(10,95),(11,96),(12,91),(13,105),(14,106),(15,107),(16,108),(17,103),(18,104),(19,89),(20,90),(21,85),(22,86),(23,87),(24,88),(25,114),(26,109),(27,110),(28,111),(29,112),(30,113),(31,55),(32,56),(33,57),(34,58),(35,59),(36,60),(37,84),(38,79),(39,80),(40,81),(41,82),(42,83),(43,62),(44,63),(45,64),(46,65),(47,66),(48,61),(49,77),(50,78),(51,73),(52,74),(53,75),(54,76),(97,118),(98,119),(99,120),(100,115),(101,116),(102,117)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120)], [(1,119,4,116),(2,118,5,115),(3,117,6,120),(7,43,10,46),(8,48,11,45),(9,47,12,44),(13,53,16,50),(14,52,17,49),(15,51,18,54),(19,31,22,34),(20,36,23,33),(21,35,24,32),(25,41,28,38),(26,40,29,37),(27,39,30,42),(55,86,58,89),(56,85,59,88),(57,90,60,87),(61,96,64,93),(62,95,65,92),(63,94,66,91),(67,100,70,97),(68,99,71,102),(69,98,72,101),(73,104,76,107),(74,103,77,106),(75,108,78,105),(79,114,82,111),(80,113,83,110),(81,112,84,109)]])

C2xD5xDic3 is a maximal subgroup of
D10.20D12  (D5xDic3):C4  D10.19(C4xS3)  Dic3:4D20  Dic15:13D4  (C6xD5).D4  Dic15:D4  Dic3:D20  D10.16D12  D10.17D12  D10:1Dic6  D10:2Dic6  Dic15.D4  D10:4Dic6  D20:8Dic3  C15:17(C4xD4)  Dic15:9D4  C23.17(S3xD5)  (C6xD5):D4  Dic15:3D4  Dic15:16D4  C22:F5.S3  S3xC2xC4xD5
C2xD5xDic3 is a maximal quotient of
D20.3Dic3  D20.2Dic3  Dic15:6Q8  (D5xC12):C4  (C4xD5):Dic3  D20:8Dic3  (C6xDic5):7C4  Dic15:16D4

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H5A5B6A6B6C6D6E6F6G10A···10F15A15B20A···20H30A···30F
order1222222234444444455666666610···10151520···2030···30
size11115555233331515151522222101010102···2446···64···4

48 irreducible representations

dim11111122222222444
type+++++++-+++++-+
imageC1C2C2C2C2C4S3D5Dic3D6D6D10D10C4xD5S3xD5D5xDic3C2xS3xD5
kernelC2xD5xDic3D5xDic3C10xDic3C2xDic15D5xC2xC6C6xD5C22xD5C2xDic3D10D10C2xC10Dic3C2xC6C6C22C2C2
# reps14111812421428242

Matrix representation of C2xD5xDic3 in GL5(F61)

600000
01000
00100
00010
00001
,
10000
01000
00100
000601
0004218
,
600000
01000
00100
00010
0001960
,
600000
0594600
049100
000600
000060
,
110000
044800
0345700
000110
000011

G:=sub<GL(5,GF(61))| [60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,60,42,0,0,0,1,18],[60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,19,0,0,0,0,60],[60,0,0,0,0,0,59,49,0,0,0,46,1,0,0,0,0,0,60,0,0,0,0,0,60],[11,0,0,0,0,0,4,34,0,0,0,48,57,0,0,0,0,0,11,0,0,0,0,0,11] >;

C2xD5xDic3 in GAP, Magma, Sage, TeX

C_2\times D_5\times {\rm Dic}_3
% in TeX

G:=Group("C2xD5xDic3");
// GroupNames label

G:=SmallGroup(240,139);
// by ID

G=gap.SmallGroup(240,139);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,55,490,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^5=c^2=d^6=1,e^2=d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<