direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C10×Dic3, C6⋊C20, C30⋊5C4, C10.16D6, C30.21C22, C3⋊2(C2×C20), (C2×C6).C10, C15⋊12(C2×C4), C22.(C5×S3), C2.2(S3×C10), (C2×C10).2S3, (C2×C30).3C2, C6.4(C2×C10), SmallGroup(120,24)
Series: Derived ►Chief ►Lower central ►Upper central
| C3 — C10×Dic3 |
Generators and relations for C10×Dic3
G = < a,b,c | a10=b6=1, c2=b3, ab=ba, ac=ca, cbc-1=b-1 >
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)
(1 75 85 105 95 70)(2 76 86 106 96 61)(3 77 87 107 97 62)(4 78 88 108 98 63)(5 79 89 109 99 64)(6 80 90 110 100 65)(7 71 81 101 91 66)(8 72 82 102 92 67)(9 73 83 103 93 68)(10 74 84 104 94 69)(11 51 41 115 40 29)(12 52 42 116 31 30)(13 53 43 117 32 21)(14 54 44 118 33 22)(15 55 45 119 34 23)(16 56 46 120 35 24)(17 57 47 111 36 25)(18 58 48 112 37 26)(19 59 49 113 38 27)(20 60 50 114 39 28)
(1 16 105 120)(2 17 106 111)(3 18 107 112)(4 19 108 113)(5 20 109 114)(6 11 110 115)(7 12 101 116)(8 13 102 117)(9 14 103 118)(10 15 104 119)(21 92 43 72)(22 93 44 73)(23 94 45 74)(24 95 46 75)(25 96 47 76)(26 97 48 77)(27 98 49 78)(28 99 50 79)(29 100 41 80)(30 91 42 71)(31 66 52 81)(32 67 53 82)(33 68 54 83)(34 69 55 84)(35 70 56 85)(36 61 57 86)(37 62 58 87)(38 63 59 88)(39 64 60 89)(40 65 51 90)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,75,85,105,95,70)(2,76,86,106,96,61)(3,77,87,107,97,62)(4,78,88,108,98,63)(5,79,89,109,99,64)(6,80,90,110,100,65)(7,71,81,101,91,66)(8,72,82,102,92,67)(9,73,83,103,93,68)(10,74,84,104,94,69)(11,51,41,115,40,29)(12,52,42,116,31,30)(13,53,43,117,32,21)(14,54,44,118,33,22)(15,55,45,119,34,23)(16,56,46,120,35,24)(17,57,47,111,36,25)(18,58,48,112,37,26)(19,59,49,113,38,27)(20,60,50,114,39,28), (1,16,105,120)(2,17,106,111)(3,18,107,112)(4,19,108,113)(5,20,109,114)(6,11,110,115)(7,12,101,116)(8,13,102,117)(9,14,103,118)(10,15,104,119)(21,92,43,72)(22,93,44,73)(23,94,45,74)(24,95,46,75)(25,96,47,76)(26,97,48,77)(27,98,49,78)(28,99,50,79)(29,100,41,80)(30,91,42,71)(31,66,52,81)(32,67,53,82)(33,68,54,83)(34,69,55,84)(35,70,56,85)(36,61,57,86)(37,62,58,87)(38,63,59,88)(39,64,60,89)(40,65,51,90)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,75,85,105,95,70)(2,76,86,106,96,61)(3,77,87,107,97,62)(4,78,88,108,98,63)(5,79,89,109,99,64)(6,80,90,110,100,65)(7,71,81,101,91,66)(8,72,82,102,92,67)(9,73,83,103,93,68)(10,74,84,104,94,69)(11,51,41,115,40,29)(12,52,42,116,31,30)(13,53,43,117,32,21)(14,54,44,118,33,22)(15,55,45,119,34,23)(16,56,46,120,35,24)(17,57,47,111,36,25)(18,58,48,112,37,26)(19,59,49,113,38,27)(20,60,50,114,39,28), (1,16,105,120)(2,17,106,111)(3,18,107,112)(4,19,108,113)(5,20,109,114)(6,11,110,115)(7,12,101,116)(8,13,102,117)(9,14,103,118)(10,15,104,119)(21,92,43,72)(22,93,44,73)(23,94,45,74)(24,95,46,75)(25,96,47,76)(26,97,48,77)(27,98,49,78)(28,99,50,79)(29,100,41,80)(30,91,42,71)(31,66,52,81)(32,67,53,82)(33,68,54,83)(34,69,55,84)(35,70,56,85)(36,61,57,86)(37,62,58,87)(38,63,59,88)(39,64,60,89)(40,65,51,90) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120)], [(1,75,85,105,95,70),(2,76,86,106,96,61),(3,77,87,107,97,62),(4,78,88,108,98,63),(5,79,89,109,99,64),(6,80,90,110,100,65),(7,71,81,101,91,66),(8,72,82,102,92,67),(9,73,83,103,93,68),(10,74,84,104,94,69),(11,51,41,115,40,29),(12,52,42,116,31,30),(13,53,43,117,32,21),(14,54,44,118,33,22),(15,55,45,119,34,23),(16,56,46,120,35,24),(17,57,47,111,36,25),(18,58,48,112,37,26),(19,59,49,113,38,27),(20,60,50,114,39,28)], [(1,16,105,120),(2,17,106,111),(3,18,107,112),(4,19,108,113),(5,20,109,114),(6,11,110,115),(7,12,101,116),(8,13,102,117),(9,14,103,118),(10,15,104,119),(21,92,43,72),(22,93,44,73),(23,94,45,74),(24,95,46,75),(25,96,47,76),(26,97,48,77),(27,98,49,78),(28,99,50,79),(29,100,41,80),(30,91,42,71),(31,66,52,81),(32,67,53,82),(33,68,54,83),(34,69,55,84),(35,70,56,85),(36,61,57,86),(37,62,58,87),(38,63,59,88),(39,64,60,89),(40,65,51,90)]])
C10×Dic3 is a maximal subgroup of
D10⋊Dic3 D30⋊4C4 C30.Q8 Dic15⋊5C4 C6.Dic10 Dic5.D6 S3×C2×C20
60 conjugacy classes
| class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 5A | 5B | 5C | 5D | 6A | 6B | 6C | 10A | ··· | 10L | 15A | 15B | 15C | 15D | 20A | ··· | 20P | 30A | ··· | 30L |
| order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 10 | ··· | 10 | 15 | 15 | 15 | 15 | 20 | ··· | 20 | 30 | ··· | 30 |
| size | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 2 | ··· | 2 |
60 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | - | + | ||||||||
| image | C1 | C2 | C2 | C4 | C5 | C10 | C10 | C20 | S3 | Dic3 | D6 | C5×S3 | C5×Dic3 | S3×C10 |
| kernel | C10×Dic3 | C5×Dic3 | C2×C30 | C30 | C2×Dic3 | Dic3 | C2×C6 | C6 | C2×C10 | C10 | C10 | C22 | C2 | C2 |
| # reps | 1 | 2 | 1 | 4 | 4 | 8 | 4 | 16 | 1 | 2 | 1 | 4 | 8 | 4 |
Matrix representation of C10×Dic3 ►in GL4(𝔽61) generated by
| 1 | 0 | 0 | 0 |
| 0 | 60 | 0 | 0 |
| 0 | 0 | 20 | 0 |
| 0 | 0 | 0 | 20 |
| 60 | 0 | 0 | 0 |
| 0 | 60 | 0 | 0 |
| 0 | 0 | 60 | 1 |
| 0 | 0 | 60 | 0 |
| 50 | 0 | 0 | 0 |
| 0 | 50 | 0 | 0 |
| 0 | 0 | 60 | 0 |
| 0 | 0 | 60 | 1 |
G:=sub<GL(4,GF(61))| [1,0,0,0,0,60,0,0,0,0,20,0,0,0,0,20],[60,0,0,0,0,60,0,0,0,0,60,60,0,0,1,0],[50,0,0,0,0,50,0,0,0,0,60,60,0,0,0,1] >;
C10×Dic3 in GAP, Magma, Sage, TeX
C_{10}\times {\rm Dic}_3 % in TeX
G:=Group("C10xDic3"); // GroupNames label
G:=SmallGroup(120,24);
// by ID
G=gap.SmallGroup(120,24);
# by ID
G:=PCGroup([5,-2,-2,-5,-2,-3,100,2004]);
// Polycyclic
G:=Group<a,b,c|a^10=b^6=1,c^2=b^3,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export