Extensions 1→N→G→Q→1 with N=C3×Dic5 and Q=C4

Direct product G=N×Q with N=C3×Dic5 and Q=C4
dρLabelID
C12×Dic5240C12xDic5240,40

Semidirect products G=N:Q with N=C3×Dic5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×Dic5)⋊1C4 = Dic3×Dic5φ: C4/C2C2 ⊆ Out C3×Dic5240(C3xDic5):1C4240,25
(C3×Dic5)⋊2C4 = C30.Q8φ: C4/C2C2 ⊆ Out C3×Dic5240(C3xDic5):2C4240,29
(C3×Dic5)⋊3C4 = C3×C10.D4φ: C4/C2C2 ⊆ Out C3×Dic5240(C3xDic5):3C4240,41
(C3×Dic5)⋊4C4 = C4×C3⋊F5φ: C4/C2C2 ⊆ Out C3×Dic5604(C3xDic5):4C4240,120
(C3×Dic5)⋊5C4 = C60⋊C4φ: C4/C2C2 ⊆ Out C3×Dic5604(C3xDic5):5C4240,121
(C3×Dic5)⋊6C4 = C12×F5φ: C4/C2C2 ⊆ Out C3×Dic5604(C3xDic5):6C4240,113
(C3×Dic5)⋊7C4 = C3×C4⋊F5φ: C4/C2C2 ⊆ Out C3×Dic5604(C3xDic5):7C4240,114

Non-split extensions G=N.Q with N=C3×Dic5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×Dic5).1C4 = D5×C3⋊C8φ: C4/C2C2 ⊆ Out C3×Dic51204(C3xDic5).1C4240,7
(C3×Dic5).2C4 = C20.32D6φ: C4/C2C2 ⊆ Out C3×Dic51204(C3xDic5).2C4240,10
(C3×Dic5).3C4 = C3×C8⋊D5φ: C4/C2C2 ⊆ Out C3×Dic51202(C3xDic5).3C4240,34
(C3×Dic5).4C4 = C2×C15⋊C8φ: C4/C2C2 ⊆ Out C3×Dic5240(C3xDic5).4C4240,122
(C3×Dic5).5C4 = C158M4(2)φ: C4/C2C2 ⊆ Out C3×Dic51204(C3xDic5).5C4240,123
(C3×Dic5).6C4 = C6×C5⋊C8φ: C4/C2C2 ⊆ Out C3×Dic5240(C3xDic5).6C4240,115
(C3×Dic5).7C4 = C3×C22.F5φ: C4/C2C2 ⊆ Out C3×Dic51204(C3xDic5).7C4240,116
(C3×Dic5).8C4 = D5×C24φ: trivial image1202(C3xDic5).8C4240,33

׿
×
𝔽