Copied to
clipboard

G = D5×C3⋊C8order 240 = 24·3·5

Direct product of D5 and C3⋊C8

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D5×C3⋊C8, C20.29D6, C12.29D10, C60.29C22, D10.4Dic3, Dic5.4Dic3, C33(C8×D5), C155(C2×C8), (C3×D5)⋊1C8, C153C89C2, (C6×D5).1C4, (C4×D5).7S3, C6.10(C4×D5), C4.22(S3×D5), C30.22(C2×C4), (D5×C12).2C2, C2.1(D5×Dic3), (C3×Dic5).1C4, C10.8(C2×Dic3), C53(C2×C3⋊C8), (C5×C3⋊C8)⋊4C2, SmallGroup(240,7)

Series: Derived Chief Lower central Upper central

C1C15 — D5×C3⋊C8
C1C5C15C30C60D5×C12 — D5×C3⋊C8
C15 — D5×C3⋊C8
C1C4

Generators and relations for D5×C3⋊C8
 G = < a,b,c,d | a5=b2=c3=d8=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

5C2
5C2
5C22
5C4
5C6
5C6
3C8
5C2×C4
15C8
5C12
5C2×C6
15C2×C8
5C2×C12
5C3⋊C8
3C40
3C52C8
5C2×C3⋊C8
3C8×D5

Smallest permutation representation of D5×C3⋊C8
On 120 points
Generators in S120
(1 28 113 88 99)(2 29 114 81 100)(3 30 115 82 101)(4 31 116 83 102)(5 32 117 84 103)(6 25 118 85 104)(7 26 119 86 97)(8 27 120 87 98)(9 22 39 72 43)(10 23 40 65 44)(11 24 33 66 45)(12 17 34 67 46)(13 18 35 68 47)(14 19 36 69 48)(15 20 37 70 41)(16 21 38 71 42)(49 112 78 95 61)(50 105 79 96 62)(51 106 80 89 63)(52 107 73 90 64)(53 108 74 91 57)(54 109 75 92 58)(55 110 76 93 59)(56 111 77 94 60)
(1 99)(2 100)(3 101)(4 102)(5 103)(6 104)(7 97)(8 98)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 41)(16 42)(17 67)(18 68)(19 69)(20 70)(21 71)(22 72)(23 65)(24 66)(25 85)(26 86)(27 87)(28 88)(29 81)(30 82)(31 83)(32 84)(49 61)(50 62)(51 63)(52 64)(53 57)(54 58)(55 59)(56 60)(89 106)(90 107)(91 108)(92 109)(93 110)(94 111)(95 112)(96 105)
(1 11 50)(2 51 12)(3 13 52)(4 53 14)(5 15 54)(6 55 16)(7 9 56)(8 49 10)(17 29 106)(18 107 30)(19 31 108)(20 109 32)(21 25 110)(22 111 26)(23 27 112)(24 105 28)(33 79 113)(34 114 80)(35 73 115)(36 116 74)(37 75 117)(38 118 76)(39 77 119)(40 120 78)(41 58 103)(42 104 59)(43 60 97)(44 98 61)(45 62 99)(46 100 63)(47 64 101)(48 102 57)(65 87 95)(66 96 88)(67 81 89)(68 90 82)(69 83 91)(70 92 84)(71 85 93)(72 94 86)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,28,113,88,99)(2,29,114,81,100)(3,30,115,82,101)(4,31,116,83,102)(5,32,117,84,103)(6,25,118,85,104)(7,26,119,86,97)(8,27,120,87,98)(9,22,39,72,43)(10,23,40,65,44)(11,24,33,66,45)(12,17,34,67,46)(13,18,35,68,47)(14,19,36,69,48)(15,20,37,70,41)(16,21,38,71,42)(49,112,78,95,61)(50,105,79,96,62)(51,106,80,89,63)(52,107,73,90,64)(53,108,74,91,57)(54,109,75,92,58)(55,110,76,93,59)(56,111,77,94,60), (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,97)(8,98)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,65)(24,66)(25,85)(26,86)(27,87)(28,88)(29,81)(30,82)(31,83)(32,84)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60)(89,106)(90,107)(91,108)(92,109)(93,110)(94,111)(95,112)(96,105), (1,11,50)(2,51,12)(3,13,52)(4,53,14)(5,15,54)(6,55,16)(7,9,56)(8,49,10)(17,29,106)(18,107,30)(19,31,108)(20,109,32)(21,25,110)(22,111,26)(23,27,112)(24,105,28)(33,79,113)(34,114,80)(35,73,115)(36,116,74)(37,75,117)(38,118,76)(39,77,119)(40,120,78)(41,58,103)(42,104,59)(43,60,97)(44,98,61)(45,62,99)(46,100,63)(47,64,101)(48,102,57)(65,87,95)(66,96,88)(67,81,89)(68,90,82)(69,83,91)(70,92,84)(71,85,93)(72,94,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,28,113,88,99)(2,29,114,81,100)(3,30,115,82,101)(4,31,116,83,102)(5,32,117,84,103)(6,25,118,85,104)(7,26,119,86,97)(8,27,120,87,98)(9,22,39,72,43)(10,23,40,65,44)(11,24,33,66,45)(12,17,34,67,46)(13,18,35,68,47)(14,19,36,69,48)(15,20,37,70,41)(16,21,38,71,42)(49,112,78,95,61)(50,105,79,96,62)(51,106,80,89,63)(52,107,73,90,64)(53,108,74,91,57)(54,109,75,92,58)(55,110,76,93,59)(56,111,77,94,60), (1,99)(2,100)(3,101)(4,102)(5,103)(6,104)(7,97)(8,98)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,65)(24,66)(25,85)(26,86)(27,87)(28,88)(29,81)(30,82)(31,83)(32,84)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60)(89,106)(90,107)(91,108)(92,109)(93,110)(94,111)(95,112)(96,105), (1,11,50)(2,51,12)(3,13,52)(4,53,14)(5,15,54)(6,55,16)(7,9,56)(8,49,10)(17,29,106)(18,107,30)(19,31,108)(20,109,32)(21,25,110)(22,111,26)(23,27,112)(24,105,28)(33,79,113)(34,114,80)(35,73,115)(36,116,74)(37,75,117)(38,118,76)(39,77,119)(40,120,78)(41,58,103)(42,104,59)(43,60,97)(44,98,61)(45,62,99)(46,100,63)(47,64,101)(48,102,57)(65,87,95)(66,96,88)(67,81,89)(68,90,82)(69,83,91)(70,92,84)(71,85,93)(72,94,86), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,28,113,88,99),(2,29,114,81,100),(3,30,115,82,101),(4,31,116,83,102),(5,32,117,84,103),(6,25,118,85,104),(7,26,119,86,97),(8,27,120,87,98),(9,22,39,72,43),(10,23,40,65,44),(11,24,33,66,45),(12,17,34,67,46),(13,18,35,68,47),(14,19,36,69,48),(15,20,37,70,41),(16,21,38,71,42),(49,112,78,95,61),(50,105,79,96,62),(51,106,80,89,63),(52,107,73,90,64),(53,108,74,91,57),(54,109,75,92,58),(55,110,76,93,59),(56,111,77,94,60)], [(1,99),(2,100),(3,101),(4,102),(5,103),(6,104),(7,97),(8,98),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,41),(16,42),(17,67),(18,68),(19,69),(20,70),(21,71),(22,72),(23,65),(24,66),(25,85),(26,86),(27,87),(28,88),(29,81),(30,82),(31,83),(32,84),(49,61),(50,62),(51,63),(52,64),(53,57),(54,58),(55,59),(56,60),(89,106),(90,107),(91,108),(92,109),(93,110),(94,111),(95,112),(96,105)], [(1,11,50),(2,51,12),(3,13,52),(4,53,14),(5,15,54),(6,55,16),(7,9,56),(8,49,10),(17,29,106),(18,107,30),(19,31,108),(20,109,32),(21,25,110),(22,111,26),(23,27,112),(24,105,28),(33,79,113),(34,114,80),(35,73,115),(36,116,74),(37,75,117),(38,118,76),(39,77,119),(40,120,78),(41,58,103),(42,104,59),(43,60,97),(44,98,61),(45,62,99),(46,100,63),(47,64,101),(48,102,57),(65,87,95),(66,96,88),(67,81,89),(68,90,82),(69,83,91),(70,92,84),(71,85,93),(72,94,86)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

D5×C3⋊C8 is a maximal subgroup of
C30.C42  C30.3C42  C30.4C42  Dic5.Dic6  Dic5.4Dic6  D10.Dic6  D10.2Dic6  S3×C8×D5  C40.55D6  C40.35D6  D20.3Dic3  D20.2Dic3  D12.24D10  C60.16C23  D20.14D6  D20.D6
D5×C3⋊C8 is a maximal quotient of
C40.51D6  C60.93D4  C60.13Q8

48 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D5A5B6A6B6C8A8B8C8D8E8F8G8H10A10B12A12B12C12D15A15B20A20B20C20D30A30B40A···40H60A60B60C60D
order1222344445566688888888101012121212151520202020303040···4060606060
size115521155222101033331515151522221010442222446···64444

48 irreducible representations

dim1111111222222222444
type++++++-+-++-
imageC1C2C2C2C4C4C8S3D5Dic3D6Dic3D10C3⋊C8C4×D5C8×D5S3×D5D5×Dic3D5×C3⋊C8
kernelD5×C3⋊C8C5×C3⋊C8C153C8D5×C12C3×Dic5C6×D5C3×D5C4×D5C3⋊C8Dic5C20D10C12D5C6C3C4C2C1
# reps1111228121112448224

Matrix representation of D5×C3⋊C8 in GL4(𝔽241) generated by

240100
1885200
0010
0001
,
240000
188100
0010
0001
,
1000
0100
000240
001240
,
30000
03000
00166126
005175
G:=sub<GL(4,GF(241))| [240,188,0,0,1,52,0,0,0,0,1,0,0,0,0,1],[240,188,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,240,240],[30,0,0,0,0,30,0,0,0,0,166,51,0,0,126,75] >;

D5×C3⋊C8 in GAP, Magma, Sage, TeX

D_5\times C_3\rtimes C_8
% in TeX

G:=Group("D5xC3:C8");
// GroupNames label

G:=SmallGroup(240,7);
// by ID

G=gap.SmallGroup(240,7);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,31,50,490,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^3=d^8=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of D5×C3⋊C8 in TeX

׿
×
𝔽