Extensions 1→N→G→Q→1 with N=C20 and Q=Dic3

Direct product G=N×Q with N=C20 and Q=Dic3
dρLabelID
Dic3×C20240Dic3xC20240,56

Semidirect products G=N:Q with N=C20 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C201Dic3 = C60⋊C4φ: Dic3/C3C4 ⊆ Aut C20604C20:1Dic3240,121
C202Dic3 = C4×C3⋊F5φ: Dic3/C3C4 ⊆ Aut C20604C20:2Dic3240,120
C203Dic3 = C605C4φ: Dic3/C6C2 ⊆ Aut C20240C20:3Dic3240,74
C204Dic3 = C4×Dic15φ: Dic3/C6C2 ⊆ Aut C20240C20:4Dic3240,72
C205Dic3 = C5×C4⋊Dic3φ: Dic3/C6C2 ⊆ Aut C20240C20:5Dic3240,58

Non-split extensions G=N.Q with N=C20 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C20.1Dic3 = C12.F5φ: Dic3/C3C4 ⊆ Aut C201204C20.1Dic3240,119
C20.2Dic3 = C15⋊C16φ: Dic3/C3C4 ⊆ Aut C202404C20.2Dic3240,6
C20.3Dic3 = C60.C4φ: Dic3/C3C4 ⊆ Aut C201204C20.3Dic3240,118
C20.4Dic3 = C60.7C4φ: Dic3/C6C2 ⊆ Aut C201202C20.4Dic3240,71
C20.5Dic3 = C153C16φ: Dic3/C6C2 ⊆ Aut C202402C20.5Dic3240,3
C20.6Dic3 = C2×C153C8φ: Dic3/C6C2 ⊆ Aut C20240C20.6Dic3240,70
C20.7Dic3 = C5×C4.Dic3φ: Dic3/C6C2 ⊆ Aut C201202C20.7Dic3240,55
C20.8Dic3 = C5×C3⋊C16central extension (φ=1)2402C20.8Dic3240,1
C20.9Dic3 = C10×C3⋊C8central extension (φ=1)240C20.9Dic3240,54

׿
×
𝔽