Extensions 1→N→G→Q→1 with N=C6×F5 and Q=C2

Direct product G=N×Q with N=C6×F5 and Q=C2
dρLabelID
C2×C6×F560C2xC6xF5240,200

Semidirect products G=N:Q with N=C6×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×F5)⋊1C2 = D6⋊F5φ: C2/C1C2 ⊆ Out C6×F5608+(C6xF5):1C2240,96
(C6×F5)⋊2C2 = C2×S3×F5φ: C2/C1C2 ⊆ Out C6×F5308+(C6xF5):2C2240,195
(C6×F5)⋊3C2 = C3×C22⋊F5φ: C2/C1C2 ⊆ Out C6×F5604(C6xF5):3C2240,117

Non-split extensions G=N.Q with N=C6×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×F5).1C2 = Dic3×F5φ: C2/C1C2 ⊆ Out C6×F5608-(C6xF5).1C2240,95
(C6×F5).2C2 = Dic3⋊F5φ: C2/C1C2 ⊆ Out C6×F5608-(C6xF5).2C2240,97
(C6×F5).3C2 = C3×C4⋊F5φ: C2/C1C2 ⊆ Out C6×F5604(C6xF5).3C2240,114
(C6×F5).4C2 = C12×F5φ: trivial image604(C6xF5).4C2240,113

׿
×
𝔽