Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D15

Direct product G=N×Q with N=C2×C4 and Q=D15
dρLabelID
C2×C4×D15120C2xC4xD15240,176

Semidirect products G=N:Q with N=C2×C4 and Q=D15
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D15 = D303C4φ: D15/C15C2 ⊆ Aut C2×C4120(C2xC4):1D15240,75
(C2×C4)⋊2D15 = C2×D60φ: D15/C15C2 ⊆ Aut C2×C4120(C2xC4):2D15240,177
(C2×C4)⋊3D15 = D6011C2φ: D15/C15C2 ⊆ Aut C2×C41202(C2xC4):3D15240,178

Non-split extensions G=N.Q with N=C2×C4 and Q=D15
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D15 = C30.4Q8φ: D15/C15C2 ⊆ Aut C2×C4240(C2xC4).1D15240,73
(C2×C4).2D15 = C60.7C4φ: D15/C15C2 ⊆ Aut C2×C41202(C2xC4).2D15240,71
(C2×C4).3D15 = C605C4φ: D15/C15C2 ⊆ Aut C2×C4240(C2xC4).3D15240,74
(C2×C4).4D15 = C2×Dic30φ: D15/C15C2 ⊆ Aut C2×C4240(C2xC4).4D15240,175
(C2×C4).5D15 = C2×C153C8central extension (φ=1)240(C2xC4).5D15240,70
(C2×C4).6D15 = C4×Dic15central extension (φ=1)240(C2xC4).6D15240,72

׿
×
𝔽