metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D60⋊11C2, C4.16D30, C20.51D6, C12.47D10, C22.2D30, Dic30⋊11C2, C30.31C23, C60.58C22, D30.5C22, Dic15.8C22, (C2×C20)⋊4S3, (C2×C60)⋊6C2, (C2×C4)⋊3D15, (C2×C12)⋊4D5, (C4×D15)⋊4C2, C5⋊5(C4○D12), C3⋊5(C4○D20), C15⋊7D4⋊7C2, C15⋊11(C4○D4), (C2×C10).29D6, (C2×C6).29D10, C6.31(C22×D5), C2.5(C22×D15), C10.31(C22×S3), (C2×C30).30C22, SmallGroup(240,178)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D60⋊11C2
G = < a,b,c | a60=b2=c2=1, bab=a-1, ac=ca, cbc=a30b >
Subgroups: 392 in 80 conjugacy classes, 35 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, D4, Q8, D5, C10, C10, Dic3, C12, D6, C2×C6, C15, C4○D4, Dic5, C20, D10, C2×C10, Dic6, C4×S3, D12, C3⋊D4, C2×C12, D15, C30, C30, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C4○D12, Dic15, C60, D30, C2×C30, C4○D20, Dic30, C4×D15, D60, C15⋊7D4, C2×C60, D60⋊11C2
Quotients: C1, C2, C22, S3, C23, D5, D6, C4○D4, D10, C22×S3, D15, C22×D5, C4○D12, D30, C4○D20, C22×D15, D60⋊11C2
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 60)(17 59)(18 58)(19 57)(20 56)(21 55)(22 54)(23 53)(24 52)(25 51)(26 50)(27 49)(28 48)(29 47)(30 46)(31 45)(32 44)(33 43)(34 42)(35 41)(36 40)(37 39)(62 120)(63 119)(64 118)(65 117)(66 116)(67 115)(68 114)(69 113)(70 112)(71 111)(72 110)(73 109)(74 108)(75 107)(76 106)(77 105)(78 104)(79 103)(80 102)(81 101)(82 100)(83 99)(84 98)(85 97)(86 96)(87 95)(88 94)(89 93)(90 92)
(1 69)(2 70)(3 71)(4 72)(5 73)(6 74)(7 75)(8 76)(9 77)(10 78)(11 79)(12 80)(13 81)(14 82)(15 83)(16 84)(17 85)(18 86)(19 87)(20 88)(21 89)(22 90)(23 91)(24 92)(25 93)(26 94)(27 95)(28 96)(29 97)(30 98)(31 99)(32 100)(33 101)(34 102)(35 103)(36 104)(37 105)(38 106)(39 107)(40 108)(41 109)(42 110)(43 111)(44 112)(45 113)(46 114)(47 115)(48 116)(49 117)(50 118)(51 119)(52 120)(53 61)(54 62)(55 63)(56 64)(57 65)(58 66)(59 67)(60 68)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,60)(17,59)(18,58)(19,57)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(62,120)(63,119)(64,118)(65,117)(66,116)(67,115)(68,114)(69,113)(70,112)(71,111)(72,110)(73,109)(74,108)(75,107)(76,106)(77,105)(78,104)(79,103)(80,102)(81,101)(82,100)(83,99)(84,98)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92), (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,89)(22,90)(23,91)(24,92)(25,93)(26,94)(27,95)(28,96)(29,97)(30,98)(31,99)(32,100)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,117)(50,118)(51,119)(52,120)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,60)(17,59)(18,58)(19,57)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(62,120)(63,119)(64,118)(65,117)(66,116)(67,115)(68,114)(69,113)(70,112)(71,111)(72,110)(73,109)(74,108)(75,107)(76,106)(77,105)(78,104)(79,103)(80,102)(81,101)(82,100)(83,99)(84,98)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92), (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,89)(22,90)(23,91)(24,92)(25,93)(26,94)(27,95)(28,96)(29,97)(30,98)(31,99)(32,100)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,117)(50,118)(51,119)(52,120)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,60),(17,59),(18,58),(19,57),(20,56),(21,55),(22,54),(23,53),(24,52),(25,51),(26,50),(27,49),(28,48),(29,47),(30,46),(31,45),(32,44),(33,43),(34,42),(35,41),(36,40),(37,39),(62,120),(63,119),(64,118),(65,117),(66,116),(67,115),(68,114),(69,113),(70,112),(71,111),(72,110),(73,109),(74,108),(75,107),(76,106),(77,105),(78,104),(79,103),(80,102),(81,101),(82,100),(83,99),(84,98),(85,97),(86,96),(87,95),(88,94),(89,93),(90,92)], [(1,69),(2,70),(3,71),(4,72),(5,73),(6,74),(7,75),(8,76),(9,77),(10,78),(11,79),(12,80),(13,81),(14,82),(15,83),(16,84),(17,85),(18,86),(19,87),(20,88),(21,89),(22,90),(23,91),(24,92),(25,93),(26,94),(27,95),(28,96),(29,97),(30,98),(31,99),(32,100),(33,101),(34,102),(35,103),(36,104),(37,105),(38,106),(39,107),(40,108),(41,109),(42,110),(43,111),(44,112),(45,113),(46,114),(47,115),(48,116),(49,117),(50,118),(51,119),(52,120),(53,61),(54,62),(55,63),(56,64),(57,65),(58,66),(59,67),(60,68)]])
D60⋊11C2 is a maximal subgroup of
D60⋊13C4 D60⋊16C4 D60⋊7C4 D60⋊10C4 D60.5C4 D60.4C4 C20.60D12 D60⋊36C22 D20.31D6 D60⋊30C22 C12.D20 C20.D12 D60.6C4 C40.69D6 D60.3C4 C8⋊D30 C8.D30 D4.D30 Q8.11D30 D4.8D30 D20.38D6 C30.C24 D5×C4○D12 S3×C4○D20 D20⋊25D6 D20⋊26D6 D4⋊6D30 Q8.15D30 C4○D4×D15 D4⋊8D30 D4.10D30
D60⋊11C2 is a maximal quotient of
C4×Dic30 C60.24Q8 C42⋊2D15 C4×D60 C42⋊7D15 C42⋊3D15 C23.8D30 D30.28D4 D30⋊9D4 C23.11D30 Dic15.3Q8 D30.29D4 D30⋊5Q8 C4⋊C4⋊D15 C60.205D4 C23.26D30 C4×C15⋊7D4 C23.28D30 C60⋊29D4
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 6A | 6B | 6C | 10A | ··· | 10F | 12A | 12B | 12C | 12D | 15A | 15B | 15C | 15D | 20A | ··· | 20H | 30A | ··· | 30L | 60A | ··· | 60P |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 10 | ··· | 10 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 2 | 30 | 30 | 2 | 1 | 1 | 2 | 30 | 30 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D5 | D6 | D6 | C4○D4 | D10 | D10 | D15 | C4○D12 | D30 | D30 | C4○D20 | D60⋊11C2 |
kernel | D60⋊11C2 | Dic30 | C4×D15 | D60 | C15⋊7D4 | C2×C60 | C2×C20 | C2×C12 | C20 | C2×C10 | C15 | C12 | C2×C6 | C2×C4 | C5 | C4 | C22 | C3 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 4 | 2 | 4 | 4 | 8 | 4 | 8 | 16 |
Matrix representation of D60⋊11C2 ►in GL2(𝔽61) generated by
49 | 55 |
6 | 8 |
37 | 14 |
33 | 24 |
14 | 45 |
16 | 47 |
G:=sub<GL(2,GF(61))| [49,6,55,8],[37,33,14,24],[14,16,45,47] >;
D60⋊11C2 in GAP, Magma, Sage, TeX
D_{60}\rtimes_{11}C_2
% in TeX
G:=Group("D60:11C2");
// GroupNames label
G:=SmallGroup(240,178);
// by ID
G=gap.SmallGroup(240,178);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,55,218,964,6917]);
// Polycyclic
G:=Group<a,b,c|a^60=b^2=c^2=1,b*a*b=a^-1,a*c=c*a,c*b*c=a^30*b>;
// generators/relations