metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D60⋊11C2, C4.16D30, C20.51D6, C12.47D10, C22.2D30, Dic30⋊11C2, C30.31C23, C60.58C22, D30.5C22, Dic15.8C22, (C2×C20)⋊4S3, (C2×C60)⋊6C2, (C2×C4)⋊3D15, (C2×C12)⋊4D5, (C4×D15)⋊4C2, C5⋊5(C4○D12), C3⋊5(C4○D20), C15⋊7D4⋊7C2, C15⋊11(C4○D4), (C2×C10).29D6, (C2×C6).29D10, C6.31(C22×D5), C2.5(C22×D15), C10.31(C22×S3), (C2×C30).30C22, SmallGroup(240,178)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D60⋊11C2
G = < a,b,c | a60=b2=c2=1, bab=a-1, ac=ca, cbc=a30b >
Subgroups: 392 in 80 conjugacy classes, 35 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, D4, Q8, D5, C10, C10, Dic3, C12, D6, C2×C6, C15, C4○D4, Dic5, C20, D10, C2×C10, Dic6, C4×S3, D12, C3⋊D4, C2×C12, D15, C30, C30, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C4○D12, Dic15, C60, D30, C2×C30, C4○D20, Dic30, C4×D15, D60, C15⋊7D4, C2×C60, D60⋊11C2
Quotients: C1, C2, C22, S3, C23, D5, D6, C4○D4, D10, C22×S3, D15, C22×D5, C4○D12, D30, C4○D20, C22×D15, D60⋊11C2
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 60)(17 59)(18 58)(19 57)(20 56)(21 55)(22 54)(23 53)(24 52)(25 51)(26 50)(27 49)(28 48)(29 47)(30 46)(31 45)(32 44)(33 43)(34 42)(35 41)(36 40)(37 39)(62 120)(63 119)(64 118)(65 117)(66 116)(67 115)(68 114)(69 113)(70 112)(71 111)(72 110)(73 109)(74 108)(75 107)(76 106)(77 105)(78 104)(79 103)(80 102)(81 101)(82 100)(83 99)(84 98)(85 97)(86 96)(87 95)(88 94)(89 93)(90 92)
(1 69)(2 70)(3 71)(4 72)(5 73)(6 74)(7 75)(8 76)(9 77)(10 78)(11 79)(12 80)(13 81)(14 82)(15 83)(16 84)(17 85)(18 86)(19 87)(20 88)(21 89)(22 90)(23 91)(24 92)(25 93)(26 94)(27 95)(28 96)(29 97)(30 98)(31 99)(32 100)(33 101)(34 102)(35 103)(36 104)(37 105)(38 106)(39 107)(40 108)(41 109)(42 110)(43 111)(44 112)(45 113)(46 114)(47 115)(48 116)(49 117)(50 118)(51 119)(52 120)(53 61)(54 62)(55 63)(56 64)(57 65)(58 66)(59 67)(60 68)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,60)(17,59)(18,58)(19,57)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(62,120)(63,119)(64,118)(65,117)(66,116)(67,115)(68,114)(69,113)(70,112)(71,111)(72,110)(73,109)(74,108)(75,107)(76,106)(77,105)(78,104)(79,103)(80,102)(81,101)(82,100)(83,99)(84,98)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92), (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,89)(22,90)(23,91)(24,92)(25,93)(26,94)(27,95)(28,96)(29,97)(30,98)(31,99)(32,100)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,117)(50,118)(51,119)(52,120)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,60)(17,59)(18,58)(19,57)(20,56)(21,55)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,48)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(62,120)(63,119)(64,118)(65,117)(66,116)(67,115)(68,114)(69,113)(70,112)(71,111)(72,110)(73,109)(74,108)(75,107)(76,106)(77,105)(78,104)(79,103)(80,102)(81,101)(82,100)(83,99)(84,98)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92), (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,89)(22,90)(23,91)(24,92)(25,93)(26,94)(27,95)(28,96)(29,97)(30,98)(31,99)(32,100)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(49,117)(50,118)(51,119)(52,120)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,60),(17,59),(18,58),(19,57),(20,56),(21,55),(22,54),(23,53),(24,52),(25,51),(26,50),(27,49),(28,48),(29,47),(30,46),(31,45),(32,44),(33,43),(34,42),(35,41),(36,40),(37,39),(62,120),(63,119),(64,118),(65,117),(66,116),(67,115),(68,114),(69,113),(70,112),(71,111),(72,110),(73,109),(74,108),(75,107),(76,106),(77,105),(78,104),(79,103),(80,102),(81,101),(82,100),(83,99),(84,98),(85,97),(86,96),(87,95),(88,94),(89,93),(90,92)], [(1,69),(2,70),(3,71),(4,72),(5,73),(6,74),(7,75),(8,76),(9,77),(10,78),(11,79),(12,80),(13,81),(14,82),(15,83),(16,84),(17,85),(18,86),(19,87),(20,88),(21,89),(22,90),(23,91),(24,92),(25,93),(26,94),(27,95),(28,96),(29,97),(30,98),(31,99),(32,100),(33,101),(34,102),(35,103),(36,104),(37,105),(38,106),(39,107),(40,108),(41,109),(42,110),(43,111),(44,112),(45,113),(46,114),(47,115),(48,116),(49,117),(50,118),(51,119),(52,120),(53,61),(54,62),(55,63),(56,64),(57,65),(58,66),(59,67),(60,68)]])
D60⋊11C2 is a maximal subgroup of
D60⋊13C4 D60⋊16C4 D60⋊7C4 D60⋊10C4 D60.5C4 D60.4C4 C20.60D12 D60⋊36C22 D20.31D6 D60⋊30C22 C12.D20 C20.D12 D60.6C4 C40.69D6 D60.3C4 C8⋊D30 C8.D30 D4.D30 Q8.11D30 D4.8D30 D20.38D6 C30.C24 D5×C4○D12 S3×C4○D20 D20⋊25D6 D20⋊26D6 D4⋊6D30 Q8.15D30 C4○D4×D15 D4⋊8D30 D4.10D30
D60⋊11C2 is a maximal quotient of
C4×Dic30 C60.24Q8 C42⋊2D15 C4×D60 C42⋊7D15 C42⋊3D15 C23.8D30 D30.28D4 D30⋊9D4 C23.11D30 Dic15.3Q8 D30.29D4 D30⋊5Q8 C4⋊C4⋊D15 C60.205D4 C23.26D30 C4×C15⋊7D4 C23.28D30 C60⋊29D4
66 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 6A | 6B | 6C | 10A | ··· | 10F | 12A | 12B | 12C | 12D | 15A | 15B | 15C | 15D | 20A | ··· | 20H | 30A | ··· | 30L | 60A | ··· | 60P |
| order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 10 | ··· | 10 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
| size | 1 | 1 | 2 | 30 | 30 | 2 | 1 | 1 | 2 | 30 | 30 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
66 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D5 | D6 | D6 | C4○D4 | D10 | D10 | D15 | C4○D12 | D30 | D30 | C4○D20 | D60⋊11C2 |
| kernel | D60⋊11C2 | Dic30 | C4×D15 | D60 | C15⋊7D4 | C2×C60 | C2×C20 | C2×C12 | C20 | C2×C10 | C15 | C12 | C2×C6 | C2×C4 | C5 | C4 | C22 | C3 | C1 |
| # reps | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 4 | 2 | 4 | 4 | 8 | 4 | 8 | 16 |
Matrix representation of D60⋊11C2 ►in GL2(𝔽61) generated by
| 49 | 55 |
| 6 | 8 |
| 37 | 14 |
| 33 | 24 |
| 14 | 45 |
| 16 | 47 |
G:=sub<GL(2,GF(61))| [49,6,55,8],[37,33,14,24],[14,16,45,47] >;
D60⋊11C2 in GAP, Magma, Sage, TeX
D_{60}\rtimes_{11}C_2 % in TeX
G:=Group("D60:11C2"); // GroupNames label
G:=SmallGroup(240,178);
// by ID
G=gap.SmallGroup(240,178);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,55,218,964,6917]);
// Polycyclic
G:=Group<a,b,c|a^60=b^2=c^2=1,b*a*b=a^-1,a*c=c*a,c*b*c=a^30*b>;
// generators/relations