Extensions 1→N→G→Q→1 with N=C4 and Q=D28

Direct product G=N×Q with N=C4 and Q=D28
dρLabelID
C4×D28112C4xD28224,68

Semidirect products G=N:Q with N=C4 and Q=D28
extensionφ:Q→Aut NdρLabelID
C41D28 = C284D4φ: D28/C28C2 ⊆ Aut C4112C4:1D28224,69
C42D28 = C4⋊D28φ: D28/D14C2 ⊆ Aut C4112C4:2D28224,90

Non-split extensions G=N.Q with N=C4 and Q=D28
extensionφ:Q→Aut NdρLabelID
C4.1D28 = D112φ: D28/C28C2 ⊆ Aut C41122+C4.1D28224,5
C4.2D28 = C112⋊C2φ: D28/C28C2 ⊆ Aut C41122C4.2D28224,6
C4.3D28 = Dic56φ: D28/C28C2 ⊆ Aut C42242-C4.3D28224,7
C4.4D28 = C282Q8φ: D28/C28C2 ⊆ Aut C4224C4.4D28224,64
C4.5D28 = C4.D28φ: D28/C28C2 ⊆ Aut C4112C4.5D28224,70
C4.6D28 = C2×C56⋊C2φ: D28/C28C2 ⊆ Aut C4112C4.6D28224,97
C4.7D28 = C2×D56φ: D28/C28C2 ⊆ Aut C4112C4.7D28224,98
C4.8D28 = C2×Dic28φ: D28/C28C2 ⊆ Aut C4224C4.8D28224,100
C4.9D28 = C14.D8φ: D28/D14C2 ⊆ Aut C4112C4.9D28224,15
C4.10D28 = C14.Q16φ: D28/D14C2 ⊆ Aut C4224C4.10D28224,16
C4.11D28 = C28.46D4φ: D28/D14C2 ⊆ Aut C4564+C4.11D28224,29
C4.12D28 = C4.12D28φ: D28/D14C2 ⊆ Aut C41124-C4.12D28224,30
C4.13D28 = D142Q8φ: D28/D14C2 ⊆ Aut C4112C4.13D28224,92
C4.14D28 = C8⋊D14φ: D28/D14C2 ⊆ Aut C4564+C4.14D28224,103
C4.15D28 = C8.D14φ: D28/D14C2 ⊆ Aut C41124-C4.15D28224,104
C4.16D28 = C28⋊C8central extension (φ=1)224C4.16D28224,10
C4.17D28 = Dic14⋊C4central extension (φ=1)562C4.17D28224,11
C4.18D28 = C56.C4central extension (φ=1)1122C4.18D28224,25
C4.19D28 = D14⋊C8central extension (φ=1)112C4.19D28224,26
C4.20D28 = D567C2central extension (φ=1)1122C4.20D28224,99

׿
×
𝔽