Copied to
clipboard

G = C28.46D4order 224 = 25·7

3rd non-split extension by C28 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.46D4, C4.11D28, M4(2)⋊3D7, (C2×C4).1D14, (C22×D7).C4, (C2×D28).6C2, C71(C4.D4), C4.Dic72C2, C22.4(C4×D7), C2.9(D14⋊C4), C4.21(C7⋊D4), (C7×M4(2))⋊7C2, C14.8(C22⋊C4), (C2×C28).13C22, (C2×C14).2(C2×C4), SmallGroup(224,29)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C28.46D4
C1C7C14C28C2×C28C2×D28 — C28.46D4
C7C14C2×C14 — C28.46D4
C1C2C2×C4M4(2)

Generators and relations for C28.46D4
 G = < a,b,c | a28=c2=1, b4=a14, bab-1=cac=a-1, cbc=a7b3 >

2C2
28C2
28C2
14C22
14C22
28C22
28C22
2C14
4D7
4D7
2C8
7C23
7C23
14C8
14D4
14D4
2D14
2D14
4D14
4D14
7M4(2)
7C2×D4
2C7⋊C8
2C56
2D28
2D28
7C4.D4

Smallest permutation representation of C28.46D4
On 56 points
Generators in S56
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 49 8 42 15 35 22 56)(2 48 9 41 16 34 23 55)(3 47 10 40 17 33 24 54)(4 46 11 39 18 32 25 53)(5 45 12 38 19 31 26 52)(6 44 13 37 20 30 27 51)(7 43 14 36 21 29 28 50)
(1 8)(2 7)(3 6)(4 5)(9 28)(10 27)(11 26)(12 25)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)(29 48)(30 47)(31 46)(32 45)(33 44)(34 43)(35 42)(36 41)(37 40)(38 39)(49 56)(50 55)(51 54)(52 53)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,49,8,42,15,35,22,56)(2,48,9,41,16,34,23,55)(3,47,10,40,17,33,24,54)(4,46,11,39,18,32,25,53)(5,45,12,38,19,31,26,52)(6,44,13,37,20,30,27,51)(7,43,14,36,21,29,28,50), (1,8)(2,7)(3,6)(4,5)(9,28)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)(49,56)(50,55)(51,54)(52,53)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,49,8,42,15,35,22,56)(2,48,9,41,16,34,23,55)(3,47,10,40,17,33,24,54)(4,46,11,39,18,32,25,53)(5,45,12,38,19,31,26,52)(6,44,13,37,20,30,27,51)(7,43,14,36,21,29,28,50), (1,8)(2,7)(3,6)(4,5)(9,28)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)(49,56)(50,55)(51,54)(52,53) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,49,8,42,15,35,22,56),(2,48,9,41,16,34,23,55),(3,47,10,40,17,33,24,54),(4,46,11,39,18,32,25,53),(5,45,12,38,19,31,26,52),(6,44,13,37,20,30,27,51),(7,43,14,36,21,29,28,50)], [(1,8),(2,7),(3,6),(4,5),(9,28),(10,27),(11,26),(12,25),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19),(29,48),(30,47),(31,46),(32,45),(33,44),(34,43),(35,42),(36,41),(37,40),(38,39),(49,56),(50,55),(51,54),(52,53)]])

C28.46D4 is a maximal subgroup of
D7×C4.D4  D28.3D4  M4(2).21D14  D28.6D4  D44D28  M4(2)⋊D14  C8.21D28  C8.24D28  M4(2).31D14  D4.3D28  D4.4D28  D2818D4  M4(2).D14  D28.39D4  M4(2).15D14
C28.46D4 is a maximal quotient of
C42.D14  (C22×D7)⋊C8  C4.Dic28  C4.D56  M4(2)⋊Dic7

41 conjugacy classes

class 1 2A2B2C2D4A4B7A7B7C8A8B8C8D14A14B14C14D14E14F28A···28F28G28H28I56A···56L
order1222244777888814141414141428···2828282856···56
size1122828222224428282224442···24444···4

41 irreducible representations

dim1111122222244
type++++++++++
imageC1C2C2C2C4D4D7D14D28C7⋊D4C4×D7C4.D4C28.46D4
kernelC28.46D4C4.Dic7C7×M4(2)C2×D28C22×D7C28M4(2)C2×C4C4C4C22C7C1
# reps1111423366616

Matrix representation of C28.46D4 in GL4(𝔽113) generated by

588100
3210900
17783581
74476419
,
1061510745
6762556
1582394
2569319
,
587500
325500
771099481
51109619
G:=sub<GL(4,GF(113))| [58,32,17,74,81,109,78,47,0,0,35,64,0,0,81,19],[106,67,15,25,15,62,82,6,107,5,39,93,45,56,4,19],[58,32,77,51,75,55,109,10,0,0,94,96,0,0,81,19] >;

C28.46D4 in GAP, Magma, Sage, TeX

C_{28}._{46}D_4
% in TeX

G:=Group("C28.46D4");
// GroupNames label

G:=SmallGroup(224,29);
// by ID

G=gap.SmallGroup(224,29);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,121,31,362,86,297,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=c^2=1,b^4=a^14,b*a*b^-1=c*a*c=a^-1,c*b*c=a^7*b^3>;
// generators/relations

Export

Subgroup lattice of C28.46D4 in TeX

׿
×
𝔽