Copied to
clipboard

G = C8⋊D14order 224 = 25·7

1st semidirect product of C8 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C81D14, D562C2, C561C22, C4.14D28, C28.12D4, D284C22, M4(2)⋊1D7, C22.5D28, C28.32C23, Dic144C22, C4○D282C2, (C2×D28)⋊7C2, C56⋊C21C2, C71(C8⋊C22), (C2×C14).5D4, (C2×C4).15D14, C2.15(C2×D28), C14.13(C2×D4), (C7×M4(2))⋊1C2, C4.30(C22×D7), (C2×C28).27C22, SmallGroup(224,103)

Series: Derived Chief Lower central Upper central

C1C28 — C8⋊D14
C1C7C14C28D28C2×D28 — C8⋊D14
C7C14C28 — C8⋊D14
C1C2C2×C4M4(2)

Generators and relations for C8⋊D14
 G = < a,b,c | a8=b14=c2=1, bab-1=a5, cac=a-1, cbc=b-1 >

Subgroups: 398 in 68 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, M4(2), D8, SD16, C2×D4, C4○D4, Dic7, C28, D14, C2×C14, C8⋊C22, C56, Dic14, C4×D7, D28, D28, D28, C7⋊D4, C2×C28, C22×D7, C56⋊C2, D56, C7×M4(2), C2×D28, C4○D28, C8⋊D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C8⋊C22, D28, C22×D7, C2×D28, C8⋊D14

Smallest permutation representation of C8⋊D14
On 56 points
Generators in S56
(1 35 15 47 12 42 25 54)(2 29 16 55 13 36 26 48)(3 37 17 49 14 30 27 56)(4 31 18 43 8 38 28 50)(5 39 19 51 9 32 22 44)(6 33 20 45 10 40 23 52)(7 41 21 53 11 34 24 46)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 21)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 28)(29 39)(30 38)(31 37)(32 36)(33 35)(40 42)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 50)

G:=sub<Sym(56)| (1,35,15,47,12,42,25,54)(2,29,16,55,13,36,26,48)(3,37,17,49,14,30,27,56)(4,31,18,43,8,38,28,50)(5,39,19,51,9,32,22,44)(6,33,20,45,10,40,23,52)(7,41,21,53,11,34,24,46), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,21)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28)(29,39)(30,38)(31,37)(32,36)(33,35)(40,42)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)>;

G:=Group( (1,35,15,47,12,42,25,54)(2,29,16,55,13,36,26,48)(3,37,17,49,14,30,27,56)(4,31,18,43,8,38,28,50)(5,39,19,51,9,32,22,44)(6,33,20,45,10,40,23,52)(7,41,21,53,11,34,24,46), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,21)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28)(29,39)(30,38)(31,37)(32,36)(33,35)(40,42)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50) );

G=PermutationGroup([[(1,35,15,47,12,42,25,54),(2,29,16,55,13,36,26,48),(3,37,17,49,14,30,27,56),(4,31,18,43,8,38,28,50),(5,39,19,51,9,32,22,44),(6,33,20,45,10,40,23,52),(7,41,21,53,11,34,24,46)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,21),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,28),(29,39),(30,38),(31,37),(32,36),(33,35),(40,42),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,50)]])

C8⋊D14 is a maximal subgroup of
D281D4  D28.3D4  D28.5D4  D28.6D4  D44D28  D4.10D28  C8.21D28  C8.24D28  C56.9C23  D4.11D28  D4.12D28  D7×C8⋊C22  D85D14  D56⋊C22  C56.C23
C8⋊D14 is a maximal quotient of
C8⋊Dic14  C42.16D14  D56⋊C4  C8⋊D28  C42.19D14  C42.20D14  C23.35D28  D28.31D4  D2813D4  D2814D4  C23.38D28  C23.13D28  D283Q8  C4⋊D56  D28.19D4  D28.3Q8  Dic148D4  C28.7Q16  C23.47D28  C23.48D28  C23.49D28  C562D4  C563D4

41 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A7B7C8A8B14A14B14C14D14E14F28A···28F28G28H28I56A···56L
order1222224447778814141414141428···2828282856···56
size1122828282228222442224442···24444···4

41 irreducible representations

dim111111222222244
type+++++++++++++++
imageC1C2C2C2C2C2D4D4D7D14D14D28D28C8⋊C22C8⋊D14
kernelC8⋊D14C56⋊C2D56C7×M4(2)C2×D28C4○D28C28C2×C14M4(2)C8C2×C4C4C22C7C1
# reps122111113636616

Matrix representation of C8⋊D14 in GL4(𝔽113) generated by

11204242
011262104
471110
17401
,
1032500
99100
07988
91481040
,
893400
132400
81595867
791115155
G:=sub<GL(4,GF(113))| [112,0,47,1,0,112,11,74,42,62,1,0,42,104,0,1],[103,99,0,91,25,1,7,48,0,0,9,104,0,0,88,0],[89,13,81,79,34,24,59,111,0,0,58,51,0,0,67,55] >;

C8⋊D14 in GAP, Magma, Sage, TeX

C_8\rtimes D_{14}
% in TeX

G:=Group("C8:D14");
// GroupNames label

G:=SmallGroup(224,103);
// by ID

G=gap.SmallGroup(224,103);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,218,188,50,579,69,6917]);
// Polycyclic

G:=Group<a,b,c|a^8=b^14=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽