metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C8⋊1D14, D56⋊2C2, C56⋊1C22, C4.14D28, C28.12D4, D28⋊4C22, M4(2)⋊1D7, C22.5D28, C28.32C23, Dic14⋊4C22, C4○D28⋊2C2, (C2×D28)⋊7C2, C56⋊C2⋊1C2, C7⋊1(C8⋊C22), (C2×C14).5D4, (C2×C4).15D14, C2.15(C2×D28), C14.13(C2×D4), (C7×M4(2))⋊1C2, C4.30(C22×D7), (C2×C28).27C22, SmallGroup(224,103)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C8⋊D14
G = < a,b,c | a8=b14=c2=1, bab-1=a5, cac=a-1, cbc=b-1 >
Subgroups: 398 in 68 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, M4(2), D8, SD16, C2×D4, C4○D4, Dic7, C28, D14, C2×C14, C8⋊C22, C56, Dic14, C4×D7, D28, D28, D28, C7⋊D4, C2×C28, C22×D7, C56⋊C2, D56, C7×M4(2), C2×D28, C4○D28, C8⋊D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C8⋊C22, D28, C22×D7, C2×D28, C8⋊D14
(1 35 15 47 12 42 25 54)(2 29 16 55 13 36 26 48)(3 37 17 49 14 30 27 56)(4 31 18 43 8 38 28 50)(5 39 19 51 9 32 22 44)(6 33 20 45 10 40 23 52)(7 41 21 53 11 34 24 46)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 21)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 28)(29 39)(30 38)(31 37)(32 36)(33 35)(40 42)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 50)
G:=sub<Sym(56)| (1,35,15,47,12,42,25,54)(2,29,16,55,13,36,26,48)(3,37,17,49,14,30,27,56)(4,31,18,43,8,38,28,50)(5,39,19,51,9,32,22,44)(6,33,20,45,10,40,23,52)(7,41,21,53,11,34,24,46), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,21)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28)(29,39)(30,38)(31,37)(32,36)(33,35)(40,42)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)>;
G:=Group( (1,35,15,47,12,42,25,54)(2,29,16,55,13,36,26,48)(3,37,17,49,14,30,27,56)(4,31,18,43,8,38,28,50)(5,39,19,51,9,32,22,44)(6,33,20,45,10,40,23,52)(7,41,21,53,11,34,24,46), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,21)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28)(29,39)(30,38)(31,37)(32,36)(33,35)(40,42)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50) );
G=PermutationGroup([[(1,35,15,47,12,42,25,54),(2,29,16,55,13,36,26,48),(3,37,17,49,14,30,27,56),(4,31,18,43,8,38,28,50),(5,39,19,51,9,32,22,44),(6,33,20,45,10,40,23,52),(7,41,21,53,11,34,24,46)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,21),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,28),(29,39),(30,38),(31,37),(32,36),(33,35),(40,42),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,50)]])
C8⋊D14 is a maximal subgroup of
D28⋊1D4 D28.3D4 D28.5D4 D28.6D4 D4⋊4D28 D4.10D28 C8.21D28 C8.24D28 C56.9C23 D4.11D28 D4.12D28 D7×C8⋊C22 D8⋊5D14 D56⋊C22 C56.C23
C8⋊D14 is a maximal quotient of
C8⋊Dic14 C42.16D14 D56⋊C4 C8⋊D28 C42.19D14 C42.20D14 C23.35D28 D28.31D4 D28⋊13D4 D28⋊14D4 C23.38D28 C23.13D28 D28⋊3Q8 C4⋊D56 D28.19D4 D28.3Q8 Dic14⋊8D4 C28.7Q16 C23.47D28 C23.48D28 C23.49D28 C56⋊2D4 C56⋊3D4
41 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 7A | 7B | 7C | 8A | 8B | 14A | 14B | 14C | 14D | 14E | 14F | 28A | ··· | 28F | 28G | 28H | 28I | 56A | ··· | 56L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 14 | 14 | 14 | 14 | 14 | 14 | 28 | ··· | 28 | 28 | 28 | 28 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 28 | 28 | 28 | 2 | 2 | 28 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | ··· | 4 |
41 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D7 | D14 | D14 | D28 | D28 | C8⋊C22 | C8⋊D14 |
kernel | C8⋊D14 | C56⋊C2 | D56 | C7×M4(2) | C2×D28 | C4○D28 | C28 | C2×C14 | M4(2) | C8 | C2×C4 | C4 | C22 | C7 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 6 | 3 | 6 | 6 | 1 | 6 |
Matrix representation of C8⋊D14 ►in GL4(𝔽113) generated by
112 | 0 | 42 | 42 |
0 | 112 | 62 | 104 |
47 | 11 | 1 | 0 |
1 | 74 | 0 | 1 |
103 | 25 | 0 | 0 |
99 | 1 | 0 | 0 |
0 | 7 | 9 | 88 |
91 | 48 | 104 | 0 |
89 | 34 | 0 | 0 |
13 | 24 | 0 | 0 |
81 | 59 | 58 | 67 |
79 | 111 | 51 | 55 |
G:=sub<GL(4,GF(113))| [112,0,47,1,0,112,11,74,42,62,1,0,42,104,0,1],[103,99,0,91,25,1,7,48,0,0,9,104,0,0,88,0],[89,13,81,79,34,24,59,111,0,0,58,51,0,0,67,55] >;
C8⋊D14 in GAP, Magma, Sage, TeX
C_8\rtimes D_{14}
% in TeX
G:=Group("C8:D14");
// GroupNames label
G:=SmallGroup(224,103);
// by ID
G=gap.SmallGroup(224,103);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-7,218,188,50,579,69,6917]);
// Polycyclic
G:=Group<a,b,c|a^8=b^14=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations