Extensions 1→N→G→Q→1 with N=C2×C10 and Q=Dic3

Direct product G=N×Q with N=C2×C10 and Q=Dic3
dρLabelID
Dic3×C2×C10240Dic3xC2xC10240,173

Semidirect products G=N:Q with N=C2×C10 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C10)⋊Dic3 = A4⋊F5φ: Dic3/C1Dic3 ⊆ Aut C2×C102012+(C2xC10):Dic3240,192
(C2×C10)⋊2Dic3 = C5×A4⋊C4φ: Dic3/C2S3 ⊆ Aut C2×C10603(C2xC10):2Dic3240,104
(C2×C10)⋊3Dic3 = A4⋊Dic5φ: Dic3/C2S3 ⊆ Aut C2×C10606-(C2xC10):3Dic3240,107
(C2×C10)⋊4Dic3 = D10.D6φ: Dic3/C3C4 ⊆ Aut C2×C10604(C2xC10):4Dic3240,124
(C2×C10)⋊5Dic3 = C22×C3⋊F5φ: Dic3/C3C4 ⊆ Aut C2×C1060(C2xC10):5Dic3240,201
(C2×C10)⋊6Dic3 = C5×C6.D4φ: Dic3/C6C2 ⊆ Aut C2×C10120(C2xC10):6Dic3240,64
(C2×C10)⋊7Dic3 = C30.38D4φ: Dic3/C6C2 ⊆ Aut C2×C10120(C2xC10):7Dic3240,80
(C2×C10)⋊8Dic3 = C22×Dic15φ: Dic3/C6C2 ⊆ Aut C2×C10240(C2xC10):8Dic3240,183

Non-split extensions G=N.Q with N=C2×C10 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C10).1Dic3 = C2×C15⋊C8φ: Dic3/C3C4 ⊆ Aut C2×C10240(C2xC10).1Dic3240,122
(C2×C10).2Dic3 = C158M4(2)φ: Dic3/C3C4 ⊆ Aut C2×C101204(C2xC10).2Dic3240,123
(C2×C10).3Dic3 = C5×C4.Dic3φ: Dic3/C6C2 ⊆ Aut C2×C101202(C2xC10).3Dic3240,55
(C2×C10).4Dic3 = C2×C153C8φ: Dic3/C6C2 ⊆ Aut C2×C10240(C2xC10).4Dic3240,70
(C2×C10).5Dic3 = C60.7C4φ: Dic3/C6C2 ⊆ Aut C2×C101202(C2xC10).5Dic3240,71
(C2×C10).6Dic3 = C10×C3⋊C8central extension (φ=1)240(C2xC10).6Dic3240,54

׿
×
𝔽