d | ρ | Label | ID | ||
---|---|---|---|---|---|
Dic3×C2×C10 | 240 | Dic3xC2xC10 | 240,173 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C10)⋊Dic3 = A4⋊F5 | φ: Dic3/C1 → Dic3 ⊆ Aut C2×C10 | 20 | 12+ | (C2xC10):Dic3 | 240,192 |
(C2×C10)⋊2Dic3 = C5×A4⋊C4 | φ: Dic3/C2 → S3 ⊆ Aut C2×C10 | 60 | 3 | (C2xC10):2Dic3 | 240,104 |
(C2×C10)⋊3Dic3 = A4⋊Dic5 | φ: Dic3/C2 → S3 ⊆ Aut C2×C10 | 60 | 6- | (C2xC10):3Dic3 | 240,107 |
(C2×C10)⋊4Dic3 = D10.D6 | φ: Dic3/C3 → C4 ⊆ Aut C2×C10 | 60 | 4 | (C2xC10):4Dic3 | 240,124 |
(C2×C10)⋊5Dic3 = C22×C3⋊F5 | φ: Dic3/C3 → C4 ⊆ Aut C2×C10 | 60 | (C2xC10):5Dic3 | 240,201 | |
(C2×C10)⋊6Dic3 = C5×C6.D4 | φ: Dic3/C6 → C2 ⊆ Aut C2×C10 | 120 | (C2xC10):6Dic3 | 240,64 | |
(C2×C10)⋊7Dic3 = C30.38D4 | φ: Dic3/C6 → C2 ⊆ Aut C2×C10 | 120 | (C2xC10):7Dic3 | 240,80 | |
(C2×C10)⋊8Dic3 = C22×Dic15 | φ: Dic3/C6 → C2 ⊆ Aut C2×C10 | 240 | (C2xC10):8Dic3 | 240,183 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C10).1Dic3 = C2×C15⋊C8 | φ: Dic3/C3 → C4 ⊆ Aut C2×C10 | 240 | (C2xC10).1Dic3 | 240,122 | |
(C2×C10).2Dic3 = C15⋊8M4(2) | φ: Dic3/C3 → C4 ⊆ Aut C2×C10 | 120 | 4 | (C2xC10).2Dic3 | 240,123 |
(C2×C10).3Dic3 = C5×C4.Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C2×C10 | 120 | 2 | (C2xC10).3Dic3 | 240,55 |
(C2×C10).4Dic3 = C2×C15⋊3C8 | φ: Dic3/C6 → C2 ⊆ Aut C2×C10 | 240 | (C2xC10).4Dic3 | 240,70 | |
(C2×C10).5Dic3 = C60.7C4 | φ: Dic3/C6 → C2 ⊆ Aut C2×C10 | 120 | 2 | (C2xC10).5Dic3 | 240,71 |
(C2×C10).6Dic3 = C10×C3⋊C8 | central extension (φ=1) | 240 | (C2xC10).6Dic3 | 240,54 |