non-abelian, soluble, monomial
Aliases: A4⋊F5, D5.S4, C5⋊(A4⋊C4), C22⋊(C3⋊F5), (C5×A4)⋊1C4, (C2×C10)⋊Dic3, (D5×A4).1C2, (C22×D5).S3, SmallGroup(240,192)
Series: Derived ►Chief ►Lower central ►Upper central
C5×A4 — A4⋊F5 |
Generators and relations for A4⋊F5
G = < a,b,c,d,e | a2=b2=c3=d5=e4=1, cac-1=eae-1=ab=ba, ad=da, cbc-1=a, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d3 >
Character table of A4⋊F5
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 5 | 6 | 10 | 15A | 15B | |
size | 1 | 3 | 5 | 15 | 8 | 30 | 30 | 30 | 30 | 4 | 40 | 12 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -i | i | i | -i | 1 | -1 | 1 | 1 | 1 | linear of order 4 |
ρ4 | 1 | 1 | -1 | -1 | 1 | i | -i | -i | i | 1 | -1 | 1 | 1 | 1 | linear of order 4 |
ρ5 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 2 | 1 | 2 | -1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ7 | 3 | -1 | 3 | -1 | 0 | 1 | -1 | 1 | -1 | 3 | 0 | -1 | 0 | 0 | orthogonal lifted from S4 |
ρ8 | 3 | -1 | 3 | -1 | 0 | -1 | 1 | -1 | 1 | 3 | 0 | -1 | 0 | 0 | orthogonal lifted from S4 |
ρ9 | 3 | -1 | -3 | 1 | 0 | -i | -i | i | i | 3 | 0 | -1 | 0 | 0 | complex lifted from A4⋊C4 |
ρ10 | 3 | -1 | -3 | 1 | 0 | i | i | -i | -i | 3 | 0 | -1 | 0 | 0 | complex lifted from A4⋊C4 |
ρ11 | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | -1 | 0 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ12 | 4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | -1 | 1-√-15/2 | 1+√-15/2 | complex lifted from C3⋊F5 |
ρ13 | 4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | -1 | 1+√-15/2 | 1-√-15/2 | complex lifted from C3⋊F5 |
ρ14 | 12 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 1 | 0 | 0 | orthogonal faithful |
(1 11)(2 12)(3 13)(4 14)(5 15)(6 18)(7 19)(8 20)(9 16)(10 17)
(1 18)(2 19)(3 20)(4 16)(5 17)(6 11)(7 12)(8 13)(9 14)(10 15)
(6 11 18)(7 12 19)(8 13 20)(9 14 16)(10 15 17)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(2 3 5 4)(6 11)(7 13 10 14)(8 15 9 12)(16 19 20 17)
G:=sub<Sym(20)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,18)(7,19)(8,20)(9,16)(10,17), (1,18)(2,19)(3,20)(4,16)(5,17)(6,11)(7,12)(8,13)(9,14)(10,15), (6,11,18)(7,12,19)(8,13,20)(9,14,16)(10,15,17), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (2,3,5,4)(6,11)(7,13,10,14)(8,15,9,12)(16,19,20,17)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,18)(7,19)(8,20)(9,16)(10,17), (1,18)(2,19)(3,20)(4,16)(5,17)(6,11)(7,12)(8,13)(9,14)(10,15), (6,11,18)(7,12,19)(8,13,20)(9,14,16)(10,15,17), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (2,3,5,4)(6,11)(7,13,10,14)(8,15,9,12)(16,19,20,17) );
G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,18),(7,19),(8,20),(9,16),(10,17)], [(1,18),(2,19),(3,20),(4,16),(5,17),(6,11),(7,12),(8,13),(9,14),(10,15)], [(6,11,18),(7,12,19),(8,13,20),(9,14,16),(10,15,17)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(2,3,5,4),(6,11),(7,13,10,14),(8,15,9,12),(16,19,20,17)]])
G:=TransitiveGroup(20,61);
(1 13)(2 14)(3 15)(4 11)(5 12)(6 26)(7 27)(8 28)(9 29)(10 30)
(6 26)(7 27)(8 28)(9 29)(10 30)(16 21)(17 22)(18 23)(19 24)(20 25)
(1 28 18)(2 29 19)(3 30 20)(4 26 16)(5 27 17)(6 21 11)(7 22 12)(8 23 13)(9 24 14)(10 25 15)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(2 3 5 4)(6 24 10 22)(7 21 9 25)(8 23)(11 14 15 12)(16 29 20 27)(17 26 19 30)(18 28)
G:=sub<Sym(30)| (1,13)(2,14)(3,15)(4,11)(5,12)(6,26)(7,27)(8,28)(9,29)(10,30), (6,26)(7,27)(8,28)(9,29)(10,30)(16,21)(17,22)(18,23)(19,24)(20,25), (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,21,11)(7,22,12)(8,23,13)(9,24,14)(10,25,15), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (2,3,5,4)(6,24,10,22)(7,21,9,25)(8,23)(11,14,15,12)(16,29,20,27)(17,26,19,30)(18,28)>;
G:=Group( (1,13)(2,14)(3,15)(4,11)(5,12)(6,26)(7,27)(8,28)(9,29)(10,30), (6,26)(7,27)(8,28)(9,29)(10,30)(16,21)(17,22)(18,23)(19,24)(20,25), (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,21,11)(7,22,12)(8,23,13)(9,24,14)(10,25,15), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (2,3,5,4)(6,24,10,22)(7,21,9,25)(8,23)(11,14,15,12)(16,29,20,27)(17,26,19,30)(18,28) );
G=PermutationGroup([[(1,13),(2,14),(3,15),(4,11),(5,12),(6,26),(7,27),(8,28),(9,29),(10,30)], [(6,26),(7,27),(8,28),(9,29),(10,30),(16,21),(17,22),(18,23),(19,24),(20,25)], [(1,28,18),(2,29,19),(3,30,20),(4,26,16),(5,27,17),(6,21,11),(7,22,12),(8,23,13),(9,24,14),(10,25,15)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(2,3,5,4),(6,24,10,22),(7,21,9,25),(8,23),(11,14,15,12),(16,29,20,27),(17,26,19,30),(18,28)]])
G:=TransitiveGroup(30,53);
(1 13)(2 14)(3 15)(4 11)(5 12)(6 26)(7 27)(8 28)(9 29)(10 30)
(6 26)(7 27)(8 28)(9 29)(10 30)(16 21)(17 22)(18 23)(19 24)(20 25)
(1 28 18)(2 29 19)(3 30 20)(4 26 16)(5 27 17)(6 21 11)(7 22 12)(8 23 13)(9 24 14)(10 25 15)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 13)(2 15 5 11)(3 12 4 14)(6 19 10 17)(7 16 9 20)(8 18)(21 29 25 27)(22 26 24 30)(23 28)
G:=sub<Sym(30)| (1,13)(2,14)(3,15)(4,11)(5,12)(6,26)(7,27)(8,28)(9,29)(10,30), (6,26)(7,27)(8,28)(9,29)(10,30)(16,21)(17,22)(18,23)(19,24)(20,25), (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,21,11)(7,22,12)(8,23,13)(9,24,14)(10,25,15), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,13)(2,15,5,11)(3,12,4,14)(6,19,10,17)(7,16,9,20)(8,18)(21,29,25,27)(22,26,24,30)(23,28)>;
G:=Group( (1,13)(2,14)(3,15)(4,11)(5,12)(6,26)(7,27)(8,28)(9,29)(10,30), (6,26)(7,27)(8,28)(9,29)(10,30)(16,21)(17,22)(18,23)(19,24)(20,25), (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,21,11)(7,22,12)(8,23,13)(9,24,14)(10,25,15), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,13)(2,15,5,11)(3,12,4,14)(6,19,10,17)(7,16,9,20)(8,18)(21,29,25,27)(22,26,24,30)(23,28) );
G=PermutationGroup([[(1,13),(2,14),(3,15),(4,11),(5,12),(6,26),(7,27),(8,28),(9,29),(10,30)], [(6,26),(7,27),(8,28),(9,29),(10,30),(16,21),(17,22),(18,23),(19,24),(20,25)], [(1,28,18),(2,29,19),(3,30,20),(4,26,16),(5,27,17),(6,21,11),(7,22,12),(8,23,13),(9,24,14),(10,25,15)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,13),(2,15,5,11),(3,12,4,14),(6,19,10,17),(7,16,9,20),(8,18),(21,29,25,27),(22,26,24,30),(23,28)]])
G:=TransitiveGroup(30,64);
A4⋊F5 is a maximal subgroup of
F5×S4
A4⋊F5 is a maximal quotient of C5⋊U2(𝔽3) D10.S4 Dic5.S4
Matrix representation of A4⋊F5 ►in GL7(𝔽61)
60 | 0 | 0 | 0 | 0 | 0 | 0 |
60 | 0 | 1 | 0 | 0 | 0 | 0 |
60 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 60 | 0 | 0 | 0 | 0 |
1 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 60 |
0 | 0 | 0 | 1 | 0 | 0 | 60 |
0 | 0 | 0 | 0 | 1 | 0 | 60 |
0 | 0 | 0 | 0 | 0 | 1 | 60 |
0 | 11 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(7,GF(61))| [60,60,60,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,1,0,0,0,0,0,0,60,60,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,60,60,60,60],[0,11,0,0,0,0,0,11,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0] >;
A4⋊F5 in GAP, Magma, Sage, TeX
A_4\rtimes F_5
% in TeX
G:=Group("A4:F5");
// GroupNames label
G:=SmallGroup(240,192);
// by ID
G=gap.SmallGroup(240,192);
# by ID
G:=PCGroup([6,-2,-2,-3,-5,-2,2,12,146,867,585,3604,916,2165,1637]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^5=e^4=1,c*a*c^-1=e*a*e^-1=a*b=b*a,a*d=d*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^3>;
// generators/relations
Export
Subgroup lattice of A4⋊F5 in TeX
Character table of A4⋊F5 in TeX