direct product, metabelian, soluble, monomial, A-group
Aliases: A4×C7⋊C3, C7⋊A4⋊C3, (C7×A4)⋊C3, C7⋊1(C3×A4), (C2×C14)⋊C32, (C22×C7⋊C3)⋊C3, C22⋊1(C3×C7⋊C3), SmallGroup(252,27)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C2×C14 — C22×C7⋊C3 — A4×C7⋊C3 |
C2×C14 — A4×C7⋊C3 |
Generators and relations for A4×C7⋊C3
G = < a,b,c,d,e | a2=b2=c3=d7=e3=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d4 >
Character table of A4×C7⋊C3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 6A | 6B | 7A | 7B | 14A | 14B | 21A | 21B | 21C | 21D | |
size | 1 | 3 | 4 | 4 | 7 | 7 | 28 | 28 | 28 | 28 | 21 | 21 | 3 | 3 | 9 | 9 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ3 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ5 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ7 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ8 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ9 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ10 | 3 | -1 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | -1 | -1 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ11 | 3 | -1 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | complex lifted from C3×A4 |
ρ12 | 3 | -1 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | complex lifted from C3×A4 |
ρ13 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ14 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ15 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | complex lifted from C3×C7⋊C3 |
ρ16 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | complex lifted from C3×C7⋊C3 |
ρ17 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | complex lifted from C3×C7⋊C3 |
ρ18 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | complex lifted from C3×C7⋊C3 |
ρ19 | 9 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3-3√-7/2 | -3+3√-7/2 | 1-√-7/2 | 1+√-7/2 | 0 | 0 | 0 | 0 | complex faithful |
ρ20 | 9 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3+3√-7/2 | -3-3√-7/2 | 1+√-7/2 | 1-√-7/2 | 0 | 0 | 0 | 0 | complex faithful |
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)
(8 15 22)(9 16 23)(10 17 24)(11 18 25)(12 19 26)(13 20 27)(14 21 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)
G:=sub<Sym(28)| (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (8,15,22)(9,16,23)(10,17,24)(11,18,25)(12,19,26)(13,20,27)(14,21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)>;
G:=Group( (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (8,15,22)(9,16,23)(10,17,24)(11,18,25)(12,19,26)(13,20,27)(14,21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27) );
G=PermutationGroup([[(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28)], [(8,15,22),(9,16,23),(10,17,24),(11,18,25),(12,19,26),(13,20,27),(14,21,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27)]])
G:=TransitiveGroup(28,40);
Matrix representation of A4×C7⋊C3 ►in GL6(𝔽43)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 42 | 0 | 0 |
0 | 0 | 0 | 42 | 0 | 1 |
0 | 0 | 0 | 42 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 42 | 1 |
0 | 0 | 0 | 0 | 42 | 0 |
0 | 0 | 0 | 1 | 42 | 0 |
36 | 0 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 36 |
0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 |
42 | 24 | 1 | 0 | 0 | 0 |
0 | 24 | 1 | 0 | 0 | 0 |
42 | 25 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 36 | 39 | 0 | 0 | 0 |
36 | 0 | 0 | 0 | 0 | 0 |
36 | 36 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 0 | 36 |
G:=sub<GL(6,GF(43))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,42,42,42,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,42,42,42,0,0,0,1,0,0],[36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,36,0,0],[42,0,42,0,0,0,24,24,25,0,0,0,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,36,36,0,0,0,36,0,36,0,0,0,39,0,3,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36] >;
A4×C7⋊C3 in GAP, Magma, Sage, TeX
A_4\times C_7\rtimes C_3
% in TeX
G:=Group("A4xC7:C3");
// GroupNames label
G:=SmallGroup(252,27);
// by ID
G=gap.SmallGroup(252,27);
# by ID
G:=PCGroup([5,-3,-3,-2,2,-7,142,68,1804]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^7=e^3=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^4>;
// generators/relations
Export
Subgroup lattice of A4×C7⋊C3 in TeX
Character table of A4×C7⋊C3 in TeX