direct product, metabelian, soluble, monomial, A-group
Aliases: C7×A4, C22⋊C21, (C2×C14)⋊1C3, SmallGroup(84,10)
Series: Derived ►Chief ►Lower central ►Upper central
C22 — C7×A4 |
Generators and relations for C7×A4
G = < a,b,c,d | a7=b2=c2=d3=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >
Character table of C7×A4
class | 1 | 2 | 3A | 3B | 7A | 7B | 7C | 7D | 7E | 7F | 14A | 14B | 14C | 14D | 14E | 14F | 21A | 21B | 21C | 21D | 21E | 21F | 21G | 21H | 21I | 21J | 21K | 21L | |
size | 1 | 3 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ3 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | ζ7 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ73 | ζ72 | ζ74 | ζ73 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ74 | ζ7 | ζ75 | ζ72 | ζ76 | ζ7 | linear of order 7 |
ρ5 | 1 | 1 | 1 | 1 | ζ76 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ74 | ζ75 | ζ73 | ζ74 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ73 | ζ76 | ζ72 | ζ75 | ζ7 | ζ76 | linear of order 7 |
ρ6 | 1 | 1 | 1 | 1 | ζ73 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ72 | ζ76 | ζ75 | ζ72 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ75 | ζ73 | ζ7 | ζ76 | ζ74 | ζ73 | linear of order 7 |
ρ7 | 1 | 1 | 1 | 1 | ζ74 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ75 | ζ7 | ζ72 | ζ75 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ72 | ζ74 | ζ76 | ζ7 | ζ73 | ζ74 | linear of order 7 |
ρ8 | 1 | 1 | 1 | 1 | ζ72 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ76 | ζ74 | ζ7 | ζ76 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ7 | ζ72 | ζ73 | ζ74 | ζ75 | ζ72 | linear of order 7 |
ρ9 | 1 | 1 | 1 | 1 | ζ75 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ7 | ζ73 | ζ76 | ζ7 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ76 | ζ75 | ζ74 | ζ73 | ζ72 | ζ75 | linear of order 7 |
ρ10 | 1 | 1 | ζ3 | ζ32 | ζ72 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ76 | ζ74 | ζ7 | ζ32ζ76 | ζ3ζ73 | ζ3ζ74 | ζ3ζ75 | ζ3ζ76 | ζ3ζ7 | ζ32ζ7 | ζ32ζ72 | ζ32ζ73 | ζ32ζ74 | ζ32ζ75 | ζ3ζ72 | linear of order 21 |
ρ11 | 1 | 1 | ζ3 | ζ32 | ζ75 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ7 | ζ73 | ζ76 | ζ32ζ7 | ζ3ζ74 | ζ3ζ73 | ζ3ζ72 | ζ3ζ7 | ζ3ζ76 | ζ32ζ76 | ζ32ζ75 | ζ32ζ74 | ζ32ζ73 | ζ32ζ72 | ζ3ζ75 | linear of order 21 |
ρ12 | 1 | 1 | ζ3 | ζ32 | ζ74 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ75 | ζ7 | ζ72 | ζ32ζ75 | ζ3ζ76 | ζ3ζ7 | ζ3ζ73 | ζ3ζ75 | ζ3ζ72 | ζ32ζ72 | ζ32ζ74 | ζ32ζ76 | ζ32ζ7 | ζ32ζ73 | ζ3ζ74 | linear of order 21 |
ρ13 | 1 | 1 | ζ32 | ζ3 | ζ75 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ7 | ζ73 | ζ76 | ζ3ζ7 | ζ32ζ74 | ζ32ζ73 | ζ32ζ72 | ζ32ζ7 | ζ32ζ76 | ζ3ζ76 | ζ3ζ75 | ζ3ζ74 | ζ3ζ73 | ζ3ζ72 | ζ32ζ75 | linear of order 21 |
ρ14 | 1 | 1 | ζ3 | ζ32 | ζ76 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ74 | ζ75 | ζ73 | ζ32ζ74 | ζ3ζ72 | ζ3ζ75 | ζ3ζ7 | ζ3ζ74 | ζ3ζ73 | ζ32ζ73 | ζ32ζ76 | ζ32ζ72 | ζ32ζ75 | ζ32ζ7 | ζ3ζ76 | linear of order 21 |
ρ15 | 1 | 1 | ζ32 | ζ3 | ζ76 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ74 | ζ75 | ζ73 | ζ3ζ74 | ζ32ζ72 | ζ32ζ75 | ζ32ζ7 | ζ32ζ74 | ζ32ζ73 | ζ3ζ73 | ζ3ζ76 | ζ3ζ72 | ζ3ζ75 | ζ3ζ7 | ζ32ζ76 | linear of order 21 |
ρ16 | 1 | 1 | ζ32 | ζ3 | ζ72 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ76 | ζ74 | ζ7 | ζ3ζ76 | ζ32ζ73 | ζ32ζ74 | ζ32ζ75 | ζ32ζ76 | ζ32ζ7 | ζ3ζ7 | ζ3ζ72 | ζ3ζ73 | ζ3ζ74 | ζ3ζ75 | ζ32ζ72 | linear of order 21 |
ρ17 | 1 | 1 | ζ32 | ζ3 | ζ7 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ73 | ζ72 | ζ74 | ζ3ζ73 | ζ32ζ75 | ζ32ζ72 | ζ32ζ76 | ζ32ζ73 | ζ32ζ74 | ζ3ζ74 | ζ3ζ7 | ζ3ζ75 | ζ3ζ72 | ζ3ζ76 | ζ32ζ7 | linear of order 21 |
ρ18 | 1 | 1 | ζ32 | ζ3 | ζ74 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ75 | ζ7 | ζ72 | ζ3ζ75 | ζ32ζ76 | ζ32ζ7 | ζ32ζ73 | ζ32ζ75 | ζ32ζ72 | ζ3ζ72 | ζ3ζ74 | ζ3ζ76 | ζ3ζ7 | ζ3ζ73 | ζ32ζ74 | linear of order 21 |
ρ19 | 1 | 1 | ζ3 | ζ32 | ζ7 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ73 | ζ72 | ζ74 | ζ32ζ73 | ζ3ζ75 | ζ3ζ72 | ζ3ζ76 | ζ3ζ73 | ζ3ζ74 | ζ32ζ74 | ζ32ζ7 | ζ32ζ75 | ζ32ζ72 | ζ32ζ76 | ζ3ζ7 | linear of order 21 |
ρ20 | 1 | 1 | ζ32 | ζ3 | ζ73 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ72 | ζ76 | ζ75 | ζ3ζ72 | ζ32ζ7 | ζ32ζ76 | ζ32ζ74 | ζ32ζ72 | ζ32ζ75 | ζ3ζ75 | ζ3ζ73 | ζ3ζ7 | ζ3ζ76 | ζ3ζ74 | ζ32ζ73 | linear of order 21 |
ρ21 | 1 | 1 | ζ3 | ζ32 | ζ73 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ72 | ζ76 | ζ75 | ζ32ζ72 | ζ3ζ7 | ζ3ζ76 | ζ3ζ74 | ζ3ζ72 | ζ3ζ75 | ζ32ζ75 | ζ32ζ73 | ζ32ζ7 | ζ32ζ76 | ζ32ζ74 | ζ3ζ73 | linear of order 21 |
ρ22 | 3 | -1 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ23 | 3 | -1 | 0 | 0 | 3ζ7 | 3ζ75 | 3ζ72 | 3ζ76 | 3ζ73 | 3ζ74 | -ζ75 | -ζ76 | -ζ7 | -ζ73 | -ζ72 | -ζ74 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 3 | -1 | 0 | 0 | 3ζ76 | 3ζ72 | 3ζ75 | 3ζ7 | 3ζ74 | 3ζ73 | -ζ72 | -ζ7 | -ζ76 | -ζ74 | -ζ75 | -ζ73 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 3 | -1 | 0 | 0 | 3ζ72 | 3ζ73 | 3ζ74 | 3ζ75 | 3ζ76 | 3ζ7 | -ζ73 | -ζ75 | -ζ72 | -ζ76 | -ζ74 | -ζ7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 3 | -1 | 0 | 0 | 3ζ73 | 3ζ7 | 3ζ76 | 3ζ74 | 3ζ72 | 3ζ75 | -ζ7 | -ζ74 | -ζ73 | -ζ72 | -ζ76 | -ζ75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 3 | -1 | 0 | 0 | 3ζ75 | 3ζ74 | 3ζ73 | 3ζ72 | 3ζ7 | 3ζ76 | -ζ74 | -ζ72 | -ζ75 | -ζ7 | -ζ73 | -ζ76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 3 | -1 | 0 | 0 | 3ζ74 | 3ζ76 | 3ζ7 | 3ζ73 | 3ζ75 | 3ζ72 | -ζ76 | -ζ73 | -ζ74 | -ζ75 | -ζ7 | -ζ72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 12)(2 13)(3 14)(4 8)(5 9)(6 10)(7 11)(15 26)(16 27)(17 28)(18 22)(19 23)(20 24)(21 25)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 22)(7 23)(8 16)(9 17)(10 18)(11 19)(12 20)(13 21)(14 15)
(8 27 16)(9 28 17)(10 22 18)(11 23 19)(12 24 20)(13 25 21)(14 26 15)
G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,12)(2,13)(3,14)(4,8)(5,9)(6,10)(7,11)(15,26)(16,27)(17,28)(18,22)(19,23)(20,24)(21,25), (1,24)(2,25)(3,26)(4,27)(5,28)(6,22)(7,23)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,15), (8,27,16)(9,28,17)(10,22,18)(11,23,19)(12,24,20)(13,25,21)(14,26,15)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,12)(2,13)(3,14)(4,8)(5,9)(6,10)(7,11)(15,26)(16,27)(17,28)(18,22)(19,23)(20,24)(21,25), (1,24)(2,25)(3,26)(4,27)(5,28)(6,22)(7,23)(8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,15), (8,27,16)(9,28,17)(10,22,18)(11,23,19)(12,24,20)(13,25,21)(14,26,15) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,12),(2,13),(3,14),(4,8),(5,9),(6,10),(7,11),(15,26),(16,27),(17,28),(18,22),(19,23),(20,24),(21,25)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,22),(7,23),(8,16),(9,17),(10,18),(11,19),(12,20),(13,21),(14,15)], [(8,27,16),(9,28,17),(10,22,18),(11,23,19),(12,24,20),(13,25,21),(14,26,15)]])
G:=TransitiveGroup(28,17);
C7×A4 is a maximal subgroup of
C7⋊S4
Matrix representation of C7×A4 ►in GL3(𝔽43) generated by
11 | 0 | 0 |
0 | 11 | 0 |
0 | 0 | 11 |
42 | 42 | 42 |
0 | 0 | 1 |
0 | 1 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
42 | 42 | 42 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
G:=sub<GL(3,GF(43))| [11,0,0,0,11,0,0,0,11],[42,0,0,42,0,1,42,1,0],[0,1,42,1,0,42,0,0,42],[0,0,1,1,0,0,0,1,0] >;
C7×A4 in GAP, Magma, Sage, TeX
C_7\times A_4
% in TeX
G:=Group("C7xA4");
// GroupNames label
G:=SmallGroup(84,10);
// by ID
G=gap.SmallGroup(84,10);
# by ID
G:=PCGroup([4,-3,-7,-2,2,506,1011]);
// Polycyclic
G:=Group<a,b,c,d|a^7=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations
Export
Subgroup lattice of C7×A4 in TeX
Character table of C7×A4 in TeX