metacyclic, supersoluble, monomial, Z-group, 11-hyperelementary
Aliases: C23⋊C11, SmallGroup(253,1)
Series: Derived ►Chief ►Lower central ►Upper central
C23 — C23⋊C11 |
Generators and relations for C23⋊C11
G = < a,b | a23=b11=1, bab-1=a12 >
Character table of C23⋊C11
class | 1 | 11A | 11B | 11C | 11D | 11E | 11F | 11G | 11H | 11I | 11J | 23A | 23B | |
size | 1 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 11 | 11 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ117 | ζ118 | ζ11 | ζ115 | ζ119 | ζ112 | ζ116 | ζ1110 | ζ113 | ζ114 | 1 | 1 | linear of order 11 |
ρ3 | 1 | ζ112 | ζ117 | ζ115 | ζ113 | ζ11 | ζ1110 | ζ118 | ζ116 | ζ114 | ζ119 | 1 | 1 | linear of order 11 |
ρ4 | 1 | ζ118 | ζ116 | ζ119 | ζ11 | ζ114 | ζ117 | ζ1110 | ζ112 | ζ115 | ζ113 | 1 | 1 | linear of order 11 |
ρ5 | 1 | ζ115 | ζ11 | ζ117 | ζ112 | ζ118 | ζ113 | ζ119 | ζ114 | ζ1110 | ζ116 | 1 | 1 | linear of order 11 |
ρ6 | 1 | ζ113 | ζ115 | ζ112 | ζ1110 | ζ117 | ζ114 | ζ11 | ζ119 | ζ116 | ζ118 | 1 | 1 | linear of order 11 |
ρ7 | 1 | ζ116 | ζ1110 | ζ114 | ζ119 | ζ113 | ζ118 | ζ112 | ζ117 | ζ11 | ζ115 | 1 | 1 | linear of order 11 |
ρ8 | 1 | ζ114 | ζ113 | ζ1110 | ζ116 | ζ112 | ζ119 | ζ115 | ζ11 | ζ118 | ζ117 | 1 | 1 | linear of order 11 |
ρ9 | 1 | ζ11 | ζ119 | ζ118 | ζ117 | ζ116 | ζ115 | ζ114 | ζ113 | ζ112 | ζ1110 | 1 | 1 | linear of order 11 |
ρ10 | 1 | ζ119 | ζ114 | ζ116 | ζ118 | ζ1110 | ζ11 | ζ113 | ζ115 | ζ117 | ζ112 | 1 | 1 | linear of order 11 |
ρ11 | 1 | ζ1110 | ζ112 | ζ113 | ζ114 | ζ115 | ζ116 | ζ117 | ζ118 | ζ119 | ζ11 | 1 | 1 | linear of order 11 |
ρ12 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-23/2 | -1+√-23/2 | complex faithful |
ρ13 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-23/2 | -1-√-23/2 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)
(2 3 5 9 17 10 19 14 4 7 13)(6 11 21 18 12 23 22 20 16 8 15)
G:=sub<Sym(23)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23), (2,3,5,9,17,10,19,14,4,7,13)(6,11,21,18,12,23,22,20,16,8,15)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23), (2,3,5,9,17,10,19,14,4,7,13)(6,11,21,18,12,23,22,20,16,8,15) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23)], [(2,3,5,9,17,10,19,14,4,7,13),(6,11,21,18,12,23,22,20,16,8,15)]])
G:=TransitiveGroup(23,3);
Matrix representation of C23⋊C11 ►in GL11(𝔽1013)
1012 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1012 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1012 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1012 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1012 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1012 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1012 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
1012 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1012 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1012 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
783 | 3 | 231 | 229 | 228 | 1009 | 782 | 783 | 785 | 3 | 230 |
784 | 3 | 231 | 229 | 228 | 1009 | 782 | 783 | 785 | 3 | 230 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 461 | 457 | 225 | 1006 | 321 | 555 | 558 | 6 | 462 | 227 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
463 | 686 | 222 | 777 | 318 | 98 | 560 | 8 | 465 | 687 | 1009 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
689 | 451 | 775 | 319 | 878 | 334 | 9 | 467 | 920 | 453 | 780 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
685 | 1003 | 317 | 94 | 884 | 797 | 468 | 923 | 915 | 221 | 552 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
450 | 315 | 877 | 100 | 338 | 702 | 923 | 133 | 679 | 545 | 556 |
G:=sub<GL(11,GF(1013))| [1012,1012,1012,1012,1012,1012,1012,1012,1012,1012,783,1,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,231,0,0,1,0,0,0,0,0,0,0,229,0,0,0,1,0,0,0,0,0,0,228,0,0,0,0,1,0,0,0,0,0,1009,0,0,0,0,0,1,0,0,0,0,782,0,0,0,0,0,0,1,0,0,0,783,0,0,0,0,0,0,0,1,0,0,785,0,0,0,0,0,0,0,0,1,0,3,0,0,0,0,0,0,0,0,0,1,230],[784,1,5,0,463,0,689,0,685,0,450,3,0,461,1,686,0,451,0,1003,0,315,231,0,457,0,222,1,775,0,317,0,877,229,0,225,0,777,0,319,1,94,0,100,228,0,1006,0,318,0,878,0,884,1,338,1009,0,321,0,98,0,334,0,797,0,702,782,0,555,0,560,0,9,0,468,0,923,783,0,558,0,8,0,467,0,923,0,133,785,0,6,0,465,0,920,0,915,0,679,3,0,462,0,687,0,453,0,221,0,545,230,0,227,0,1009,0,780,0,552,0,556] >;
C23⋊C11 in GAP, Magma, Sage, TeX
C_{23}\rtimes C_{11}
% in TeX
G:=Group("C23:C11");
// GroupNames label
G:=SmallGroup(253,1);
// by ID
G=gap.SmallGroup(253,1);
# by ID
G:=PCGroup([2,-11,-23,89]);
// Polycyclic
G:=Group<a,b|a^23=b^11=1,b*a*b^-1=a^12>;
// generators/relations
Export
Subgroup lattice of C23⋊C11 in TeX
Character table of C23⋊C11 in TeX