direct product, abelian, monomial, 2-elementary
Aliases: C2×C122, SmallGroup(244,5)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C122 |
C1 — C2×C122 |
C1 — C2×C122 |
Generators and relations for C2×C122
G = < a,b | a2=b122=1, ab=ba >
(1 215)(2 216)(3 217)(4 218)(5 219)(6 220)(7 221)(8 222)(9 223)(10 224)(11 225)(12 226)(13 227)(14 228)(15 229)(16 230)(17 231)(18 232)(19 233)(20 234)(21 235)(22 236)(23 237)(24 238)(25 239)(26 240)(27 241)(28 242)(29 243)(30 244)(31 123)(32 124)(33 125)(34 126)(35 127)(36 128)(37 129)(38 130)(39 131)(40 132)(41 133)(42 134)(43 135)(44 136)(45 137)(46 138)(47 139)(48 140)(49 141)(50 142)(51 143)(52 144)(53 145)(54 146)(55 147)(56 148)(57 149)(58 150)(59 151)(60 152)(61 153)(62 154)(63 155)(64 156)(65 157)(66 158)(67 159)(68 160)(69 161)(70 162)(71 163)(72 164)(73 165)(74 166)(75 167)(76 168)(77 169)(78 170)(79 171)(80 172)(81 173)(82 174)(83 175)(84 176)(85 177)(86 178)(87 179)(88 180)(89 181)(90 182)(91 183)(92 184)(93 185)(94 186)(95 187)(96 188)(97 189)(98 190)(99 191)(100 192)(101 193)(102 194)(103 195)(104 196)(105 197)(106 198)(107 199)(108 200)(109 201)(110 202)(111 203)(112 204)(113 205)(114 206)(115 207)(116 208)(117 209)(118 210)(119 211)(120 212)(121 213)(122 214)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122)(123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244)
G:=sub<Sym(244)| (1,215)(2,216)(3,217)(4,218)(5,219)(6,220)(7,221)(8,222)(9,223)(10,224)(11,225)(12,226)(13,227)(14,228)(15,229)(16,230)(17,231)(18,232)(19,233)(20,234)(21,235)(22,236)(23,237)(24,238)(25,239)(26,240)(27,241)(28,242)(29,243)(30,244)(31,123)(32,124)(33,125)(34,126)(35,127)(36,128)(37,129)(38,130)(39,131)(40,132)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,141)(50,142)(51,143)(52,144)(53,145)(54,146)(55,147)(56,148)(57,149)(58,150)(59,151)(60,152)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,161)(70,162)(71,163)(72,164)(73,165)(74,166)(75,167)(76,168)(77,169)(78,170)(79,171)(80,172)(81,173)(82,174)(83,175)(84,176)(85,177)(86,178)(87,179)(88,180)(89,181)(90,182)(91,183)(92,184)(93,185)(94,186)(95,187)(96,188)(97,189)(98,190)(99,191)(100,192)(101,193)(102,194)(103,195)(104,196)(105,197)(106,198)(107,199)(108,200)(109,201)(110,202)(111,203)(112,204)(113,205)(114,206)(115,207)(116,208)(117,209)(118,210)(119,211)(120,212)(121,213)(122,214), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122)(123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244)>;
G:=Group( (1,215)(2,216)(3,217)(4,218)(5,219)(6,220)(7,221)(8,222)(9,223)(10,224)(11,225)(12,226)(13,227)(14,228)(15,229)(16,230)(17,231)(18,232)(19,233)(20,234)(21,235)(22,236)(23,237)(24,238)(25,239)(26,240)(27,241)(28,242)(29,243)(30,244)(31,123)(32,124)(33,125)(34,126)(35,127)(36,128)(37,129)(38,130)(39,131)(40,132)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,141)(50,142)(51,143)(52,144)(53,145)(54,146)(55,147)(56,148)(57,149)(58,150)(59,151)(60,152)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,161)(70,162)(71,163)(72,164)(73,165)(74,166)(75,167)(76,168)(77,169)(78,170)(79,171)(80,172)(81,173)(82,174)(83,175)(84,176)(85,177)(86,178)(87,179)(88,180)(89,181)(90,182)(91,183)(92,184)(93,185)(94,186)(95,187)(96,188)(97,189)(98,190)(99,191)(100,192)(101,193)(102,194)(103,195)(104,196)(105,197)(106,198)(107,199)(108,200)(109,201)(110,202)(111,203)(112,204)(113,205)(114,206)(115,207)(116,208)(117,209)(118,210)(119,211)(120,212)(121,213)(122,214), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122)(123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244) );
G=PermutationGroup([[(1,215),(2,216),(3,217),(4,218),(5,219),(6,220),(7,221),(8,222),(9,223),(10,224),(11,225),(12,226),(13,227),(14,228),(15,229),(16,230),(17,231),(18,232),(19,233),(20,234),(21,235),(22,236),(23,237),(24,238),(25,239),(26,240),(27,241),(28,242),(29,243),(30,244),(31,123),(32,124),(33,125),(34,126),(35,127),(36,128),(37,129),(38,130),(39,131),(40,132),(41,133),(42,134),(43,135),(44,136),(45,137),(46,138),(47,139),(48,140),(49,141),(50,142),(51,143),(52,144),(53,145),(54,146),(55,147),(56,148),(57,149),(58,150),(59,151),(60,152),(61,153),(62,154),(63,155),(64,156),(65,157),(66,158),(67,159),(68,160),(69,161),(70,162),(71,163),(72,164),(73,165),(74,166),(75,167),(76,168),(77,169),(78,170),(79,171),(80,172),(81,173),(82,174),(83,175),(84,176),(85,177),(86,178),(87,179),(88,180),(89,181),(90,182),(91,183),(92,184),(93,185),(94,186),(95,187),(96,188),(97,189),(98,190),(99,191),(100,192),(101,193),(102,194),(103,195),(104,196),(105,197),(106,198),(107,199),(108,200),(109,201),(110,202),(111,203),(112,204),(113,205),(114,206),(115,207),(116,208),(117,209),(118,210),(119,211),(120,212),(121,213),(122,214)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122),(123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244)]])
C2×C122 is a maximal subgroup of
C61⋊D4
244 conjugacy classes
class | 1 | 2A | 2B | 2C | 61A | ··· | 61BH | 122A | ··· | 122FX |
order | 1 | 2 | 2 | 2 | 61 | ··· | 61 | 122 | ··· | 122 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
244 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C61 | C122 |
kernel | C2×C122 | C122 | C22 | C2 |
# reps | 1 | 3 | 60 | 180 |
Matrix representation of C2×C122 ►in GL2(𝔽367) generated by
366 | 0 |
0 | 1 |
75 | 0 |
0 | 230 |
G:=sub<GL(2,GF(367))| [366,0,0,1],[75,0,0,230] >;
C2×C122 in GAP, Magma, Sage, TeX
C_2\times C_{122}
% in TeX
G:=Group("C2xC122");
// GroupNames label
G:=SmallGroup(244,5);
// by ID
G=gap.SmallGroup(244,5);
# by ID
G:=PCGroup([3,-2,-2,-61]);
// Polycyclic
G:=Group<a,b|a^2=b^122=1,a*b=b*a>;
// generators/relations
Export